Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comprehensive Experimental Study to Measure Laminar and Turbulent Burning Velocity of Haltermann Gasoline with Ternary Additives (O3, H2, and CO)

2021-04-06
2021-01-0473
In this work, the effects of ozone, hydrogen, carbon monoxide, and exhaust gas recirculation (EGR) addition to Haltermann gasoline combustion were investigated. For these additives, laminar and turbulent flame speeds were experimentally determined using spherically propagating premixed flames in a constant volume combustion vessel. Two initial mixture pressures of Po = 1 and 5 bar, two initial mixture temperatures of 358 and 373 K and a range of equivalence ratios (Ф) from 0.5 to 1 were investigated. The additives were added as single, binary and ternary mixtures to Haltermann gasoline over a wide range of concentrations. For the stoichiometric mixture, the addition of 10% H2, 5% CO and 1000 ppm O3 shows remarkable enhancement (80%) in SL0compared to neat Haltermann gasoline. In addition, for this same blend, increasing the mixture initial temperature and pressure results in a significant increase in SL0compared to the neat gasoline.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

Air-System and Variable Valve Actuation Recipe for High Load Gasoline Compression Ignition Operation in a Heavy-Duty Diesel Engine

2021-04-06
2021-01-0516
Gasoline compression ignition (GCI) offers improved efficiency by harnessing gasoline’s low reactivity to induce an extended ignition delay that promotes partial premixing of air and fuel before combustion occurs. However, enabling GCI across the full engine operating load map poses several challenges. At high load, due to the elevated pressures and temperatures of the charge mixture, the ignition delay time shrinks, leading to diminished GCI efficiency benefits. At low load, insufficient temperatures and pressures can lead to combustion instability. Variable valve actuation offers a practical solution to these challenges by enabling effective compression ratio (ECR) control. In this paper, the effects of variable intake valve closings were investigated for high load operations in a prototype heavy-duty GCI engine, using a research octane number 93 gasoline fuel. The study focused on the 50% (B50) and the 75% (B75) load conditions at 1375 RPM.
Technical Paper

Air-to-Fuel Ratio Calculation Methods for Oxygenated Fuels in Two-Stroke Engines

2015-04-14
2015-01-0965
In 1990, Roy Douglas developed an analytical method to calculate the global air-to-fuel ratio of a two-stroke engine from exhaust gas emissions. While this method has considerable application to two-stroke engines, it does not permit the calculation of air-to-fuel ratios for oxygenated fuels. This study proposed modifications to the Roy Douglas method such that it can be applied to oxygenated fuels. The ISO #16183 standard, the modified Spindt method, and the Brettschneider method were used to evaluate the modifications to the Roy Douglas method. In addition, a trapped air-to-fuel ratio, appropriate for two-stroke engines, was also modified to incorporate oxygenated fuels. To validate the modified calculation method, tests were performed using a two-stroke carbureted and two-stroke direct injected marine outboard engine over a five-mode marine test cycle running indolene and low level blends of ethanol and iso-butanol fuels.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine

2018-04-03
2018-01-0226
This research investigates the potential of gasoline compression ignition (GCI) to achieve low engine-out NOx emissions with high fuel efficiency in a heavy-duty diesel engine. The experimental work was conducted in a model year (MY) 2013 Cummins ISX15 heavy-duty diesel engine, covering a load range of 5 to 15 bar BMEP at 1375 rpm. The engine compression ratio (CR) was reduced from the production level of 18.9 to 15.7 without altering the combustion bowl design. In this work, four gasolines with research octane number (RON) ranging from 58 to 93 were studied. Overall, GCI operation resulted in enhanced premixed combustion, improved NOx-soot tradeoffs, and similar or moderately improved fuel efficiency compared to diesel combustion. A split fuel injection strategy was employed for the two lower reactivity gasolines (RON80 and RON93), while the RON60 and RON70 gasolines used a single fuel injection strategy.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

An Overview of ARES Research

2011-01-19
2011-26-0085
With an intention to improve the performance of reciprocating engines used for distributed generation US-Dept. of Energy has launched ARES program. Under this program, the performance targets for these natural gas-fuelled stationary engines are ≻ 50% efficiency and NOx emissions ≺ 0.1 g/bhp-hr by 2013. This paper presents two technologies developed under this program. Lean-burn operation is very popular with engine manufacturers as it offers simultaneous low-NOx emissions and high engine efficiencies, while not requiring the use of any aftertreatment devices. Though engines operating on lean-burn operation are capable of better performance, they are currently limited by the inability to sustain reliable ignition under lean conditions. Addressing such an issue, research has evaluated the use of laser ignition as an alternative to the conventional Capacitance Discharge Ignition (CDI).
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Technical Paper

Analysis of Vehicle Performance at the FutureTruck 2002 Competition

2003-03-03
2003-01-1255
In June of 2002, 15 universities participated in the third year of FutureTruck, an advanced vehicle competition sponsored by the U.S. Department of Energy and Ford Motor Company. Using advanced technologies, teams strived to improve vehicle energy efficiency by at least 25%, reduce tailpipe emissions to ULEV levels, and lower greenhouse gas impact of a 2002 Ford Explorer. The competition vehicles were tested for dynamic performance and emissions and were judged in static events to evaluate the design and features of the vehicle. The dynamic events include braking, acceleration, handling, and fuel economy, while the dynamometer testing provided data for both the emissions event and the greenhouse gas event. The vehicles were scored for their performance in each event relative to each other; those scores were summed to determine the winner of the competition. The competition structure included different available fuels and encouraged the use of hybrid electric drivetrains.
Technical Paper

Application of PHEV Fractional Utility Factor Weighting to EcoCAR On-Road Emissions and Energy Consumption Testing

2016-04-05
2016-01-1180
EcoCAR is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The EcoCAR Advanced Vehicle Technology Competition series is organized by Argonne National Laboratory, headline sponsored by the U.S. Department of Energy and General Motors, and sponsored by more than 30 industry and government leaders. In the last competition series, EcoCAR 2, fifteen university teams from across North America were challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. This paper examines the results of the EcoCAR 2 competition’s emissions and energy consumption (E&EC) on-road test results for several prototype plug-in hybrid electric vehicles (PHEVs). The official results for each vehicle are presented along with brief descriptions of the hybrid architectures.
Technical Paper

Assessing Tank-to-Wheel Efficiencies of Advanced Technology Vehicles

2003-03-03
2003-01-0412
This paper analyzes four recent major studies carried out by MIT, a GM-led team, Directed Technologies, Inc., and A. D. Little, Inc. to assess advanced technology vehicles. These analyses appear to differ greatly concerning their perception of the energy benefits of advanced technology vehicles, leading to great uncertainties in estimating full-fuel-cycle (or “well-to-wheel”) greenhouse gas (GHG) emission reduction potentials and/or fuel feedstock requirements per mile of service. Advanced vehicles include, but are not limited to, advanced gasoline and diesel internal combustion engine (ICE) vehicles, hybrid electric vehicles (HEVs) with gasoline, diesel, and compressed natural gas (CNG) ICEs, and various kinds of fuel-cell based vehicles (FCVs), such as direct hydrogen FCVs and gasoline or methanol fuel-based FCVs.
Technical Paper

Assessing and Modeling Direct Hydrogen and Gasoline Reforming Fuel Cell Vehicles and Their Cold-Start Performance

2003-06-23
2003-01-2252
This paper analyzes fuel economy benefits of direct hydrogen and gasoline reformer fuel cell vehicles, with special focus on cold-start impacts on these fuel cell based vehicles. Comparing several existing influential studies reveals that the most probable estimates from these studies differ greatly on the implied benefits of both types of fuel cell vehicles at the tank-to-wheel level (vehicle-powertrain efficiency and/or specific power), leading to great uncertainties in estimating well-to-wheel fuel energy and/or greenhouse gas (GHG) emission reduction potentials. This paper first addresses methodological issues to influence the outcome of these analyses. With one exception, we find that these studies consistently ignore cold-start and warm-up issues, which play important roles in determining both energy penalties and start-up time of fuel cell vehicles. To better understand cold-start and warm-up behavior, this paper examines approaches and results based on two available U.S.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Technical Paper

CFD and X-Ray Analysis of Gaseous Direct Injection from an Outward Opening Injector

2016-04-05
2016-01-0850
Using natural gas in an internal combustion engine (ICE) is emerging as a promising way to improve thermal efficiency and reduce exhaust emissions. In the development of such engine platforms, computational fluid dynamics (CFD) plays a fundamental role in the optimization of geometries and operating parameters. One of the most relevant issues in the simulation of direct injection (DI) gaseous processes is the accurate prediction of the gas jet evolution. The simulation of the injection process for a gaseous fuel does not require complex modeling, nevertheless properly describing high-pressure gas jets remains a challenging task. At the exit of the nozzle, the injected gas is under-expanded, the flow becomes supersonic and shocks occur due to compressibility effects. These phenomena lead to challenging computational requirements resulting from high grid resolution and low computational time-steps.
X