Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Multicomponent Fuels, Fuel Additives and Fuel Impurities on Fuel Reforming

In order to determine any synergistic effects from reforming multicomponent fuels and to determine the effects of fuel additives and impurities we have investigated the autothermal reforming of fuel blends, including paraffin-aromatic, paraffin-naphthene, paraffin-oxygenate, and paraffin-detergent binary mixtures. The results indicate that aromatic, naphthenic, and detergent components adversely effect the reforming of paraffinic species. The results suggest that competitive adsorption at the catalyst sites decreases conversion rates of the paraffinic species. The paraffinic species are displaced by more strongly adsorbing species, leading to decreased kinetics for paraffin conversion.
Technical Paper

How Fuel Composition Affects On-Board Reforming for Fuel Cell Vehicles

Different blends of gasoline range hydrocarbons were investigated to determine the effect of aromatic, naphthenic, and paraffinic content on performance in an autothermal reformer. In addition, we investigated the effects of detergent, antioxidant, and oxygenate additives. These tests indicate that composition effects are minimal at temperatures of 800°C and above, but at lower temperatures or at high gas hourly space velocities (GHSV approaching 100,000 h-1) composition can have a large effect on catalyst performance. Fuels high in aromatic and naphthenic components were more difficult to reform. In addition, additives, such as detergents and oxygenates were shown to decrease reformer performance at lower temperatures.