Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Correlation of Split-Injection Needle Lift and Spray Structure

2011-04-12
2011-01-0383
While the use of injection strategies utilizing multiple injection events for each engine cycle has become common, there are relatively few studies of the spray structure of split injection events. Optical spray measurements are particularly difficult for split injection events with a short dwell time between injections, since droplets from the first injection will obscure the end of the first and the start of the second injection. The current study uses x-ray radiography to examine the near-nozzle spray structure of split injection events with a short dwell time between the injection events. In addition, x-ray phase-enhanced imaging is used to measure the injector needle lift vs. time for split injections with various dwell timings. Near the minimum dwell time needed to create two separate injection events, the spray behavior is quite sensitive to the dwell time.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Journal Article

Quantification of Shot-to-Shot Variation in Single Hole Diesel Injectors

2015-04-14
2015-01-0936
Recent advancements in x-ray radiography diagnostics for direct injection sprays at Argonne's Advanced Photon Source have allowed absorption measurements of individual spray events, in addition to ensemble-averaged measurements. These measurements offer insight into the shot-to-shot variation of these sprays in the near-nozzle, spray formation region. Three single hole diesel injectors are studied across various injection and ambient pressures, spanning 14 different conditions. We calculated two dimensional maps of the standard deviation in line of sight mass distribution between individual spray events. These illuminated the spatial and temporal extent of variability between spray events. Regions of large fluctuations were observed to move downstream during the initial spray period and reached a steady state location after this initial transient.
Journal Article

Recent Developments in X-ray Diagnostics for Cavitation

2015-04-14
2015-01-0918
Cavitation plays an important role in fuel injection systems. It alters the nozzle's internal flow structure and discharge coefficient, and also contributes to injector wear. Quantitatively measuring and mapping the cavitation vapor distribution in a fuel injector is difficult, as cavitation occurs on very short time and length scales. Optical measurements of transparent model nozzles can indicate the morphology of large-scale cavitation, but are generally limited by the substantial amount of scattering that occurs between vapor and liquid phases. These limitations can be overcome with x-ray diagnostics, as x-rays refract, scatter and absorb much more weakly from phase interfaces. Here, we present an overview of some recent developments in quantitative x-ray diagnostics for cavitating flows. Measurements were conducted at the Advanced Photon Source at Argonne National Laboratory, using a submerged plastic test nozzle.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
X