Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Comparing the Performance of GTL/ULSD Blends in Older and Newer Diesel Passenger Cars

2008-06-23
2008-01-1810
Gas-to-Liquids (GTL) is a liquid diesel fuel produced from natural gas, which may have certain attributes different from conventional ultra low sulfur diesel (ULSD). In this investigation, GTL, ULSD, and their blends of 20% and 50% GTL in ULSD were tested in an older Mercedes C Class (MY1999, Euro 2) and a newer Opel Astra (MY2006, Euro 4) diesel vehicle to evaluate the performance in terms of fuel consumption and emissions. Each vehicle was pre-conditioned on-road with one tank full of test fuel before actual testing in a chassis dynamometer facility. Both vehicles were calibrated for European emission standards and operation, and they were not re-calibrated for the fuel tests at Argonne National Laboratory (ANL). In the two-vehicle EPA FTP-75, US06, and Highway drive-cycle tests, the emissions of carbon dioxide on a per-mile basis (g/mi) from all GTL-containing fuels were significantly lower than those from the ULSD.
Technical Paper

Critical Factors in the Development of Well-To-Wheel Analyses of Alternative Fuel and Advanced Powertrain Heavy-Duty Vehicles

2016-04-05
2016-01-1284
A heavy-duty vehicle (HDV) module of the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model has been developed at Argonne National Laboratory. The fuel-cycle GREET model has been published extensively and contains data on fuel-cycles and vehicle operation of light-duty vehicles. The addition of the HDV module to the GREET model allows for well-to-wheel (WTW) analyses of heavy-duty advanced technology and alternative fuel vehicles (AFVs), which has been lacking in the literature. WTW analyses of HDVs becomes increasingly important to understand the fuel consumption and greenhouse gas (GHG) emissions impacts of newly enacted and future HDV regulations from the Environmental Protection Agency and the Department of Transportation’s National Highway Traffic Safety Administration.
Technical Paper

Development of Fuel Consumption Standards for Chinese Light-Duty Vehicles

2005-04-11
2005-01-0534
To restrain the phenomenal increase in oil consumption in China, the Chinese government called for measures to reduce oil consumption of the road transportation sector through adopting vehicle fuel consumption standards. This paper describes the development of China's first set of fuel consumption standards for light-duty passenger vehicles. The adopted standards cover M1 class vehicles, which, according to European definition (and adopted by China), include passenger cars, minivans, and sports utility vehicles (SUVs). In particular, we present the goal, technical background, structure, and values of the adopted standards. We also present their potential effect on oil use reduction. The standards are set in liters of fuel consumption per 100 km for individual vehicle weight categories. The standards are maximum fuel consumption values for given vehicle weight categories.
Technical Paper

Development of Fuel Consumption Test Method Standards for Heavy-Duty Commercial Vehicles in China

2011-09-13
2011-01-2292
To restrain the environmental and energy problems caused by oil consumption and improve fuel economy of heavy-duty commercial vehicles, China started developing relevant standards from 2008. This paper introduces the background and development of China's national standard “Fuel consumption test methods for heavy-duty commercial vehicles”, and mainly describes the test method schemes, driving cycle and weighting factors for calculating average fuel consumption of various vehicle categories. The standard applies to heavy-duty vehicles with the maximum design gross mass greater than 3500 kg, including semi-trailer tractors, common trucks, dump trucks, city buses and common buses. The standard adopts the C-WTVC driving cycle which is adjusted on the basis of the World Transient Vehicle Cycle[1, 2] and specifies weighting factors of urban, rural and motorway segments for different vehicle categories.
Technical Paper

Full Fuel–Cycle Greenhouse Gas Emission Impacts of Transportation Fuels Produced from Natural Gas

2000-04-26
2000-01-1505
Because of its abundance and because it offers significant energy and environmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this paper, we present greenhouse gas emission impacts of using various natural gas–based transportation fuels. We include eight fuels – compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer–Tropsch diesel, and electricity – for use in five types of motor vehicles – spark–ignition vehicles, compression–ignition vehicles, hybrid electric vehicles, battery–powered electric vehicles, and fuel–cell vehicles. In our evaluation, we separate these fuels and vehicle technologies into near– and long–term options to address technology progress over time.
Journal Article

Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Electric Vehicles in the United States

2013-04-08
2013-01-1283
While electric vehicles including plug-in hybrid electric vehicles (PHEVs) and battery-powered electric vehicles (BEVs) are considered as promising alternative vehicle/fuel systems to significantly reduce petroleum consumption of the transportation sector, it is important to analyze the emission characteristics and to assess the emission reduction potentials of electric vehicles so that their environmental impacts in terms of climate change, air quality, as well as human health effects could be better understood. To fulfill this objective, we explicitly analyzed the emission characteristics of greenhouse gases (GHG) and criteria air pollutants (CAP, representing VOC, CO, NOx, PM₁₀ and PM₂.₅, and SOx,) of the U.S. power sector, a pivotal upstream sector that impacts the life-cycle GHG and CAP emissions associated with electric vehicles.
Journal Article

Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel

2016-10-17
2016-01-2208
Gasoline Compression Ignition (GCI) engines using a low octane gasoline-like fuel (LOF) have good potential to achieve lower NOx and lower particulate matter emissions with higher fuel efficiency compared to the modern diesel compression ignition (CI) engines. In this work, we conduct a well-to-wheels (WTW) analysis of the greenhouse gas (GHG) emissions and energy use of the potential LOF GCI vehicle technology. A detailed linear programming (LP) model of the US Petroleum Administration for Defense District Region (PADD) III refinery system - which produces more than 50% of the US refined products - is modified to simulate the production of the LOF in petroleum refineries and provide product-specific energy efficiencies. Results show that the introduction of the LOF production in refineries reduces the throughput of the catalytic reforming unit and thus increases the refinery profit margins.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
X