Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Combustion Behavior of Gasoline and Gasoline/Ethanol Blends in a Modern Direct-Injection 4-Cylinder Engine

Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range. This paper summarizes combustion studies performed with gasoline as well as blends of gasoline and ethanol. These tests were performed on a modern, 4-cylinder spark ignition engine with direct fuel injection and exhaust gas recirculation. To evaluate the influence of blending on the combustion behavior the engine was operated on the base gasoline calibration. Cylinder pressure data taken during the testing allowed for detailed analysis of rates of heat release and combustion stability.
Technical Paper

Effect of Injector Nozzle Finish on Performance and Emissions in a HSDI, Light-duty, Diesel Engine

The purpose of this study was to determine the effect of injector nozzle hole size, shape, and finish on performance and emissions in a light-duty diesel engine. Two sets of six-hole valve covered orifice (VCO) nozzles were tested with nearly identical volumetric flow rates but varying geometry and finish. The 17% hydro-erosion (HE) nozzles had a 22% larger discharge coefficient (CD), compared to the 7% HE nozzles. In order to maintain similar volumetric flow rates, the orifice diameter of the 17% HE nozzles were reduced by almost 10%.The nozzles were tested in a 1.7L, four-cylinder, common rail diesel engine, operating on conventional D2 diesel fuel. The 17% HE, conical-shaped nozzles reduced fuel specific particulate matter (PM) and increased fuel specific oxides of nitrogen (NOx) emissions, over the 7% HE, straight-shaped nozzle.
Technical Paper

Emissions, Performance, and In-Cylinder Combustion Analysis in a Light-Duty Diesel Engine Operating on a Fischer-Tropsch, Biomass-to-Liquid Fuel

SunDiesel™ is an alternative bio-fuel derived from wood chips that has certain properties that are superior to those of conventional diesel (D2). In this investigation, 100% SunDiesel was tested in a Mercedes A-Class (model year 1999), 1.7L, turbocharged, direct-injection diesel engine (EURO II) equipped with a common-rail injection system. By using an endoscope system, Argonne researchers collected in-cylinder visualization data to compare the engine combustion characteristics of the SunDiesel with those of D2. Measurements were made at one engine speed and load condition (2,500 rpm, 50% load) and four start-of-injection (SOI) points, because of a limited source of SunDiesel fuel. Significant differences in soot concentration, as measured by two-color optical pyrometry, were observed. The optical and cylinder pressure data clearly show significant differences in combustion duration and ignition delay between the two fuels.