Refine Your Search

Topic

Search Results

Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

2019-01-15
2019-01-0001
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning

2020-04-14
2020-01-1313
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated.
Technical Paper

Computing Statistical Averages from Large Eddy Simulation of Spray Flames

2016-04-05
2016-01-0585
The primary strength of large eddy simulation (LES) is in directly resolving the instantaneous large-scale flow features which can then be used to study critical flame properties such as ignition, extinction, flame propagation and lift-off. However, validation of the LES results with experimental or direct numerical simulation (DNS) datasets requires the determination of statistically-averaged quantities. This is typically done by performing multiple realizations of LES and performing a statistical averaging among this sample. In this study, LES of n-dodecane spray flame is performed using a well-mixed turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. The computational cost of each calculation was in the order of 3 weeks on 200 processors with a peak cell count of about 22 million at 1 ms.
Technical Paper

Drive Cycle Fuel Consumption Variability of Plug-In Hybrid Electric Vehicles Due to Aggressive Driving

2009-04-20
2009-01-1335
Previous studies and on-road driving by consumers have shown that Hybrid Electric Vehicle fuel economy is very dependent on driver demand in both vehicle speed and vehicle acceleration [1]. The emerging technology of Plug-In Hybrid Vehicles (PHEV) may prove to also be more sensitivity to aggressive driver demand as compared to conventional internal combustion engine vehicles. This is due to the exceptional ability of the PHEV to minimize fuel consumption at mid to low power levels by the significant use of electric propulsion which enables engine downsizing. As vehicle speed and acceleration increase so does the power demand on the powertrain. The fuel consumption is directly affected by this increase in power demand level. To examine the fuel consumption impact of changing driver characteristics on PHEV’s, testing is conducted on two vehicles (parallel PHEV and power-split PHEV) on a four wheel chassis dynamometer at Argonne’s Advanced Powertrain Research Facility.
Technical Paper

Effect of Fuel Temperature on the Performance of a Heavy-Duty Diesel Injector Operating with Gasoline

2021-04-06
2021-01-0547
In this last decade, non-destructive X-ray measurement techniques have provided unique insights into the internal surface and flow characteristics of automotive injectors. This has in turn contributed to enhancing the accuracy of Computational Fluid Dynamics (CFD) models of these critical injection system components. By employing realistic injector geometries in CFD simulations, designers and modelers have identified ways to modify the injectors’ design to improve their performance. In recent work, the authors investigated the occurrence of cavitation in a heavy-duty multi-hole diesel injector operating with a high-volatility gasoline-like fuel for gasoline compression ignition applications. They proposed a comprehensive numerical study in which the original diesel injector design would be modified with the goal of suppressing the in-nozzle cavitation that occurs when gasoline fuels are used.
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Efficiency-Optimized Operating Strategy of a Supercharged Hydrogen-Powered Four-Cylinder Engine for Hybrid Environments

2007-07-23
2007-01-2046
As an energy carrier, hydrogen has the potential to deliver clean and renewable power for transportation. When powered by hydrogen, internal combustion engine technology may offer an attractive alternative to enable the transition to a hydrogen economy. Port-injected hydrogen engines generate extremely low emissions and offer high engine efficiencies if operated in a lean combustion strategy. This paper presents experimental data for different constant air/fuel ratio engine combustion strategies and introduces variable air/fuel ratio strategies for engine control. The paper also discusses the shift strategy to optimize fuel economy and contrasts the different engine control strategies in the conventional vehicle environment. The different strategies are evaluated on the urban driving cycle, then engine behaviors are explained and fuel economy is estimated. Finally, the paper projects the potential of hybridization and discusses trends in powertrain cycle efficiencies.
Technical Paper

Evaluation of Ethanol Blends for Plug-In Hybrid Vehicles Using Engine in the Loop

2012-04-16
2012-01-1280
Their easy availability, lower well-to-wheel emissions, and relative ease of use with existing engine technologies have made ethanol and ethanol-gasoline blends a viable alternative to gasoline for use in spark-ignition (SI) engines. The lower energy density of ethanol and ethanol-gasoline blends, however, results in higher volumetric fuel consumption compared with gasoline. Also, the higher latent heat of vaporization can result in cold-start issues with higher-level ethanol blends. On the other hand, a higher octane number, which indicates resistance to knock and potentially enables more optimal combustion phasing, results in better engine efficiency, especially at higher loads. This paper compares the fuel consumption and emissions of two ethanol blends (E50 and E85) with those for gasoline when used in conventional (non-hybrid) and power-split-type plug-in hybrid electric vehicles (PHEVs).
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Technical Paper

Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer

2016-04-05
2016-01-0602
In internal combustion engine computational fluid dynamics (CFD) simulations, uncertainties arise from various sources, such as estimates of model parameters, experimental boundary conditions, estimates of chemical kinetic rates, etc. These uncertainties propagate through the model and may result in discrepancies compared to experimental measurements. The relative importance of the various sources of uncertainty can be quantified by performing a sensitivity analysis. In this work, global sensitivity analysis (GSA) was applied to engine CFD simulations of a low-temperature combustion concept called gasoline compression ignition, to understand the influence of experimental measurement uncertainties from various sources on specific targets of interest-spray penetration, ignition timing, combustion phasing, combustion duration, and emissions. The sensitivity of these targets was evaluated with respect to imposed uncertainties in experimental boundary conditions and fuel properties.
Technical Paper

Impact of Advanced Engine and Powertrain Technologies on Engine Operation and Fuel Consumption for Future Vehicles

2015-04-14
2015-01-0978
Near-term advances in spark ignition (SI) engine technology (e.g., variable value lift [VVL], gasoline direct injection [GDI], cylinder deactivation, turbo downsizing) for passenger vehicles hold promise of delivering significant fuel savings for vehicles of the immediate future. Similarly, trends in transmissions indicate higher (8-speed, 9-speed) gear numbers, higher spans, and a focus on downspeeding to improve engine efficiency. Dual-clutch transmissions, which exhibit higher efficiency in lower gears, than the traditional automatics, and are being introduced in the light-duty vehicle segment worldwide. Another development requiring low investment and delivering immediate benefits has been the adaptation of start-stop (micro hybrids or idle engine stop technology) technology in vehicles today.
Technical Paper

Interdependence of System Control and Component Sizing for a Hydrogen-fueled Hybrid Vehicle

2005-09-07
2005-01-3457
Argonne National Laboratory (ANL) researchers have embarked on an ambitious program to quantitatively demonstrate the potential of hydrogen as a fuel for internal combustion engines (ICEs) in hybrid-electric vehicle applications. In this initiative, ANL researchers need to investigate different hybrid configurations, different levels of hybridization, and different control strategies to evaluate their impacts on the potential of hydrogen ICEs in a hybrid system. Because of limitations in the choice of motor and battery hardware, a common practice is to fix the size of the battery and motor, depending on the hybrid configuration (starter/alternator, mild hybrid, or full hybrid) and to tune the system control for the above-available electrical power/energy. ANL has developed a unique, flexible, Hardware-In-the-Loop (HIL) platform for advanced powertrain technology evaluation: The Mobile Advanced Technology Testbed (MATT).
Technical Paper

Investigation of Injection Parameters in a Hydrogen DI Engine Using an Endoscopic Access to the Combustion Chamber

2007-04-16
2007-01-1464
In order to achieve the targets for hydrogen engines set by the U.S. Department of Energy (DOE) - a brake thermal efficiency of 45% and nitrogen oxide (NOx) emissions below 0.07 g/mi - while maintaining the same power density as comparable gasoline engines, researchers need to investigate advanced mixture formation and combustion strategies for hydrogen internal combustion engines. Hydrogen direct injection is a very promising approach to meeting DOE targets; however, there are several challenges to be overcome in order to establish this technology as a viable pathway toward a sustainable hydrogen infrastructure. This paper describes the use of endoscopic imaging as a diagnostic tool that allows further insight into the processes that occur during hydrogen combustion. It also addresses recent progress in the development of advanced direct-injected hydrogen internal combustion engine concepts.
Technical Paper

Large Eddy Simulation of a Reacting Spray Flame under Diesel Engine Conditions

2015-09-01
2015-01-1844
Reynolds-averaged Navier-Stokes (RANS) turbulence model has been used extensively for diesel engine simulations due to its computational efficiency and is expected to remain the workhorse computational fluid dynamics (CFD) tool for industry in the near future. Alternatively, large eddy simulations (LES) can potentially deal with complex flows and cover a large disparity of turbulence length scales, which makes this technique more and more attractive in the engine community. An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a dynamic structure LES model to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was closed using a delta probability density function (PDF) combustion model. A 103-species skeletal mechanism was used for n-dodecane chemical kinetic model.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
X