Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations

2016-04-05
2016-01-0593
Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
Technical Paper

Diagnostics for Combustion Metrics in Natural Gas Fuelled Reciprocating Engines

2011-01-19
2011-26-0007
Two diagnostics were developed that are particularly suitable for use with natural gas-fuelled reciprocating engines that are used for power generation applications. The first diagnostic relates flame chemiluminescence to thermodynamic metrics relevant to engine combustion - Heat Release Rate (HRR) and in-cylinder bulk gas temperature. Studies were conducted in a single-cylinder natural gas-fired reciprocating engine that could simulate turbocharged conditions with Exhaust Gas Recirculation. Crank-angle-resolved spectra (266 to 795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean Effective Pressure (BMEP) at 12 bar. The effect of dilution on CO₂* chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6 - 1.0) and by varying the Exhaust Gas Recirculation rate.
Technical Paper

Evaluation of Ignition Timing Predictions Using Control-Oriented Models in Kinetically-Modulated Combustion Regimes

2012-04-16
2012-01-1136
Knock integrals and corresponding ignition delay (τ) correlations are often used in model-based control algorithms in order to predict ignition timing for kinetically modulated combustion regimes such as HCCI and PCCI. They can also be used to estimate knock-inception during conventional SI operation. The purpose of this study is to investigate the performance of various τ correlations proposed in the literature, including those developed based on fundamental data from shock tubes and rapid compression machines, those based on predictions from isochoric simulations using detailed chemical kinetic mechanisms, and those deduced from data of operating engines. A 0D engine simulation framework is used to compare the correlation performance where evaluations are based on the temperatures required at intake valve closure (TIVC) in order to achieve a fixed CA50 point over a range of conditions.
Technical Paper

Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer

2016-04-05
2016-01-0602
In internal combustion engine computational fluid dynamics (CFD) simulations, uncertainties arise from various sources, such as estimates of model parameters, experimental boundary conditions, estimates of chemical kinetic rates, etc. These uncertainties propagate through the model and may result in discrepancies compared to experimental measurements. The relative importance of the various sources of uncertainty can be quantified by performing a sensitivity analysis. In this work, global sensitivity analysis (GSA) was applied to engine CFD simulations of a low-temperature combustion concept called gasoline compression ignition, to understand the influence of experimental measurement uncertainties from various sources on specific targets of interest-spray penetration, ignition timing, combustion phasing, combustion duration, and emissions. The sensitivity of these targets was evaluated with respect to imposed uncertainties in experimental boundary conditions and fuel properties.
Technical Paper

Ignition Characteristics of Methane-air Mixtures at Elevated Temperatures and Pressures

2005-05-11
2005-01-2189
Lean operation of natural gas fired reciprocating engines has been the preferred mode of operation as it allows low NOx emissions and simultaneous high overall efficiencies. In such engines, the operation point is often close to where the ignition boundary and the knock limiting boundary cross-over. While knocking is, to a large extent, limited by engine design, ignition of lean-mixtures is limited by the mode of ignition. Since significant benefits can be achieved by extending the lean-ignition limits, many groups have been researching alternate ways to achieve ignition reliably. One of the methods, laser ignition, appears promising as it achieves ignition at high pressures and under lean conditions relatively easily. However, most of the current knowledge about laser ignition is based on measurements performed at room temperature. In this paper, ignition studies on methane-air mixtures under in-cylinder conditions are presented.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Technical Paper

Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

2012-04-16
2012-01-1336
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
Journal Article

Time-Resolved X-Ray Radiography of Spark Ignition Plasma

2016-04-05
2016-01-0640
Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
X