Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

An Assessment of Electric Vehicle Life Cycle Costs to Consumers

1998-11-30
982182
A methodology for evaluating life cycle cost of electric vehicles (EVs) to their buyers is presented. The methodology is based on an analysis of conventional vehicle costs, costs of drivetrain and auxiliary components unique to EVs, and battery costs. The conventional vehicle's costs are allocated to such subsystems as body, chassis, and powertrain. In electric vehicles, an electric drive is substituted for the conventional powertrain. The current status of the electric drive components and battery costs is evaluated. Battery costs are estimated by evaluating the material requirements and production costs at different production levels; battery costs are also collected from other sources. Costs of auxiliary components, such as those for heating and cooling the passenger compartment, are also estimated. Here, the methodology is applied to two vehicle types: subcompact car and minivan.
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Automated Model Based Design Process to Evaluate Advanced Component Technologies

2010-04-12
2010-01-0936
To reduce development time and introduce technologies faster to the market, many companies have been turning more and more to Model Based Design. In Model Based Design, the development process centers around a system model, from requirements capture and design to implementation and test. Engineers can skip over a generation of system design processes on the basis of hand coding and use graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a Plug-and-Play Software Environment, to design and evaluate component hardware in an emulated environment. We will discuss best practices and provide an example through evaluation of advanced high-energy battery pack within an emulated Plug-in Hybrid Electric Vehicle.
Technical Paper

Development and Validation of the Ford Focus Battery Electric Vehicle Model

2014-04-01
2014-01-1809
This paper presents the vehicle model development and validation process for the Ford Focus battery electric vehicles (BEVs) using Autonomie and test results from Advanced Powertrain Research Facility in Argonne National Laboratory. The parameters or characteristic values for the important components such as the electric machine and battery pack system are estimated through analyzing the test data of the multi cycle test (MCT) procedure under the standard ambient condition. A novel process was used to import vehicle test data into Autonomie. Through this process, a complete vehicle model of the Ford Focus BEV is developed and validated under ambient temperature for different drive cycles (UDDS, HWFET, US06 and Steady-State). The simulation results of the developed vehicle model show coincident results with the test data within 0.5% ∼ 4% discrepancies for electrical consumption.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Mass Impacts on Fuel Economies of Conventional vs. Hybrid Electric Vehicles

2004-03-08
2004-01-0572
The strong correlation between vehicle weight and fuel economy for conventional vehicles (CVs) is considered common knowledge, and the relationship of mass reduction to fuel consumption reduction for conventional vehicles (CVs) is often cited without separating effects of powertrain vs. vehicle body (glider), nor on the ground of equivalent vehicle performance level. This paper challenges the assumption that this relationship is easily summarized. Further, for hybrid electric vehicles (HEVs) the relationship between mass, performance and fuel consumption is not the same as for CVs, and vary with hybrid types. For fully functioning (all wheel regeneration) hybrid vehicles, where battery pack and motor(s) have enough power and energy storage, a very large fraction of kinetic energy is recovered and engine idling is effectively eliminated.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Technical Paper

Plug-and-Play Software Architecture to Support Automated Model-Based Control Process

2010-10-05
2010-01-1996
To reduce development time and introduce technologies to the market more quickly, companies are increasingly turning to Model-Based Design. The development process - from requirements capture and design to testing and implementation - centers around a system model. Engineers are skipping over a generation of system design processes based on hand coding and instead are using graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a plug-and-play software environment, to evaluate a component hardware in an emulated environment. We will discuss best practices and show the process through evaluation of an advanced high-energy battery pack within an emulated plug-in hybrid electric vehicle.
Technical Paper

Potential Cost Savings of Combining Power and Energy Batteries in a BEV 300

2016-04-05
2016-01-1213
Present-day battery technologies support a battery electric vehicle with a 300mile range (BEV 300), but the cost of such a vehicle hinders its large-scale adoption by consumers. The U.S. Department of Energy (DOE) has set aggressive cost targets for battery technologies. At present, no single technology meets the cost, energy, and power requirements of a BEV 300, but a combination of multiple batteries with different capabilities might be able to lower the overall cost closer to the DOE target. This study looks at how such a combination can be implemented in vehicle simulation models and compares the vehicle manufacturing and operating costs to a baseline BEV 300. Preliminary analysis shows an opportunity to modestly reduce BEV 300 energy storage system cost by about 8% using a battery pack that combines an energy and power battery. The baseline vehicle considered in the study uses a single battery sized to meet both the power and energy requirements of a BEV 300.
Technical Paper

Pressurized and Atmospheric Pressure Gasoline-Fueled Polymer Electrolyte Fuel Cell System Performance

1999-08-02
1999-01-2574
The operating pressure is one of the critical issues in designing a gasoline-fueled PEM fuel cell system for transportation applications. Pressurized (3atm) and atmospheric pressure (1atm) fuel cell systems are being considered by various developers for automotive applications. Systems analyses have been performed for the two systems using GCtool, a computer simulation code developed at Argonne National Laboratory. The two systems were designed for comparable overall system efficiencies at a rated design power of 50 kW. The characteristics and performance of the different components of the two systems were compared at the design power and at part-load operating conditions. Transient analyses were performed to investigate the dynamic response of the two systems during cold startup. The pros and cons of the two systems regarding their performance, size, and preliminary cost estimates are presented.
Technical Paper

Testing and Analysis of Three Plug-in Hybrid Electric Vehicles

2007-04-16
2007-01-0283
Current-production hybrid electric vehicles (HEVs) have shown a measurable improvement in fuel economy, in comparison with conventional vehicles, by using the internal combustion engine in a more efficient operating region, which therefore reduces petroleum consumption. These HEVs operate with a charge-sustaining control strategy. Plug-in HEVs (PHEVs) show the potential to further decrease petroleum consumption by operating in a charge-depletion control strategy, in which the energy stored in the battery pack in used during normal driving and recharged through stationary, off-board vehicle charging. This charge-depletion strategy uses more electrical energy to propel the vehicle, which displaces more petroleum. This paper discusses the testing and analysis of a Hymotion Prius PHEV, an Energy CS Prius PHEV, and a Renault Kangoo PHEV.
Technical Paper

The Prospects for Hybrid Electric Vehicles, 2005-2020: Results of a Delphi Study

1999-08-17
1999-01-2942
The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among U.S. automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future “top-selling” HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020.
X