Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations

2013-04-08
2013-01-1095
Traditional Lagrangian spray modeling approaches for internal combustion engines are highly grid-dependent due to insufficient resolution in the near nozzle region. This is primarily because of inherent restrictions of volume fraction with the Lagrangian assumption together with high computational costs associated with small grid sizes. A state-of-the-art grid-convergent spray modeling approach was recently developed and implemented by Senecal et al., (ASME-ICEF2012-92043) in the CONVERGE software. The key features of the methodology include Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, which enables use of cell sizes smaller than the nozzle diameter. This modeling approach was rigorously validated against non-evaporating, evaporating, and reacting data from the literature.
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

A Simple Fan Model for Underhood Thermal Management Analyses

2002-03-04
2002-01-1025
This work presents a simple fan model that is based on the actuator disk approximation, and the blade element and vortex theory of a propeller. A set of equations are derived that require as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades. These equations are solved iteratively to obtain the body forces generated by the fan in the axial and circumferential directions. These forces are used as momentum sources in a CFD code to simulate the effect of the fan in an underhood thermal management simulation. To validate this fan model, a fan experiment was simulated. The model was incorporated into the CFD code STAR-CD and predictions were generated for axial and circumferential air velocities at different radial positions and at different planes downstream of the fan. The agreement between experimental measurements and predictions is good.
Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Technical Paper

A Study on Efficiency and Emission Enhancements in a 4-Stroke Natural Gas Lean Burn Engine

1996-02-01
960849
Experiments were performed with a 4-stroke, natural gas fueled SI engine to investigate the effects of several parameters on engine performance under lean operating condition. A favorable effect of charge swirl on stable lean burn operation was observed at a conventional compression ratio. There was an optimum EGR rate which gave a substantial reduction in NOx emissions with minor penalties in efficiency and UHC emissions. Marginal improvement was noticed with lean operations in a long spark duration ignition system. The flame jet ignition system displayed noticeable capability in extending the lean limit. In addition, shadowgraph visualization tests were performed for combustion diagnostic purposes.
Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Technical Paper

A Study on the Flow in the Engine Intake System

1995-09-01
952067
To design an optimum engine intake system, a flow model for the intake manifold was developed by the method of characteristics. The flow in the intake manifold was one-dimensional, and finite difference equations were derived from the governing equations of flow. The thermodynamic properties inside a cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using a steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for a flow model were established. From this model, design variables for the intake system were investigated. The optimum manifold length became shorter when the engine speed were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found.
Technical Paper

A Study on the Friction Characteristics of Engine Bearing and Cam/Tappet Contacts from the Measurement of Temperature and Oil Film Thickness

1995-10-01
952472
This paper discusses the effects of lubricant viscosity on the friction characteristics of engine bearing and cam/tappet which are the typical moving parts of an engine and operate in different lubrication regimes. Based on the measured crankshaft temperatures, we calculated the friction coefficient of the engine bearing according to Sommerfeld number by a simple heat equilibrium equation. The oil film thicknesses between cam and tappet were measured in a motored cylinder head which had a direct acting type overhead camshaft. The boundary and viscous friction components were estimated separately according to a parameter defined as the ratio of the central oil film thickness to the composite surface roughness. These two friction components were added to calculate the friction coefficient. Finally, the motoring friction torque was measured and compared with the estimated friction coefficient.
Technical Paper

A Study on the Transient Characteristics of Automatic Transmission with Detailed Dynamic Modeling

1994-03-01
941014
Transient characteristics during gear ratio change including the disturbance of output torque have been important issues in the study of passenger car automatic transmission. In this paper, to investigate the transient characteristics during gear ratio change, a detailed dynamic model of the power transmission system of a passenger car focused on the automatic transmission was proposed and the governing dynamic equations were derived and solved. The results of simulation showed good agreements with the experimental data. It was proved that the suggested dynamic model is very useful to analyze the phenomena occurred during the speed ratio change.
Technical Paper

A Technique to Identify the Structure Borne Sound Sources Induced by Powertrain Vibration Behavior

1995-05-01
951235
Identification of structure borne sound sources induced by the structural vibration of an automotive powertrain has been studied. Based on the principal component analysis which uses singular value decomposition of a matrix consisting of the auto- and cross-spectra, the operating vibrational analysis is performed. The quantitative description of the output power due to intrinsic incoherent source is addressed. The applicability of the technique is tested both numerically and experimentally. First, the coherence analysis is numerically carried out with a simple structure which is modeled as multi-input and single output to identify the structure borne noise generation process. Second, the actual vibrational behavior of a powertrain structure and the interior noise analysis of a car under the running condition are carried out. The technique is shown to be very effective in the identification of the structure borne noise sources.
Technical Paper

A development of diesel oxidation catalyst and the evaluation of its performance characteristic

2000-06-12
2000-05-0287
The new concept oxidation for diesel engine has been developed. It has been designed to use under circumstances of the "dry condition" of exhausted emission, which indicates low soluble organics and high dry soot concentration under high exhaust gas temperature. For the reliability and performance of catalysts in dry condition, several design concepts were established. First of all, extremely low sulfate formation on catalyst at high temperature conditions, and an improved soluble organic burning characteristics was required. A minimization of deposition of the particulate component, especially sulfate, was obtained from the adjustment of washcoat loading and material property. Six different types of catalysts have been prepared and tested in a laboratory. Diesel vehicle test showed the possibility that soluble organic could be removed mostly with minimal sulfate formation.
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

A throttle/brake control law for vehicle intelligent cruise control

2000-06-12
2000-05-0369
A throttle/brake control law for the intelligent cruise control (ICC) system has been proposed in this paper. The ICC system consists of a vehicle detection sensor, a controller and throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster (EVB) and a step-motor-controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were performed using a complete nonlinear vehicle model. The proposed control law in this paper consists of an algorithm that generates the desired acceleration/deceleration profile in an ICC situation, a throttle/brake switching logic and a throttle and brake control algorithm based on vehicle dynamics. The control performance has been investigated through computer simulations and experiments.
X