Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Technical Paper

Experimental and Numerical Studies on Combustion Model Selection for Split Injection Spray Combustion

2015-04-14
2015-01-0374
A wide variety of spray models and their associated sub-models exist to assist with numerical spray development studies in the many applicable areas viz., turbines, internal combustion engines etc. The accuracy of a simulation when compared to the experiments varies, as these models chosen are varied. Also, the computational grid plays a crucial role in model correctness; a grid-converged CFD study is more valuable and assists in proper validation at later stages. Of primary relevance to this paper are the combustion models for a grid-converged Lagrangian spray modeling scenario. CONVERGE CFD code is used for simulation of split injection diesel (n-heptane) sprays and a structured methodology, using RNG k-ε turbulence model, is followed to obtain a grid-converged solution for the key Computational Fluid Dynamics (CFD) parameters viz., grid size, injected parcels and spray break-up time constant.
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
Technical Paper

Numerical Evaluation of Spark Assisted Cold Idle Operation in a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0410
Gasoline compression ignition (GCI) has been shown to offer benefits in the NOx-soot tradeoff over conventional diesel combustion while still achieving high fuel efficiency. However, due to gasoline’s low reactivity, it is challenging for GCI to attain robust ignition and stable combustion under cold operating conditions. Building on previous work to evaluate glow plug-assisted GCI combustion at cold idle, this work evaluates the use of a spark plug to assist combustion. The closed-cycle 3-D CFD model was validated against GCI test results at a compression ratio of 17.3 during extended cold idle operation under laboratory-controlled conditions. A market representative, ethanol-free, gasoline (RON92, E0) was used in both the experiment and the numerical analysis. Spark-assisted simulations were performed by incorporating an ignition model with the spark energy required for stable combustion at cold start.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors

2019-04-02
2019-01-1145
Fuel stratification effects on the combustion and emissions behaviors for partially premixed compression ignition (PPCI) combustion of a high reactivity gasoline (research octane number of 80) was investigated using the third generation Gasoline Direct-Injection Compression Ignition (Gen3 GDCI) multi-cylinder engine. The PPCI combustion mode was achieved through a double injection strategy. The extent of in-cylinder fuel stratification was tailored by varying the start of second fuel injection timing (SOIsecond) while the first fuel injection event was held constant and occurred during the intake stroke. Based on the experimental results, three combustion characteristic zones were identified in terms of the SOIsecond - CA50 (crank angle at 50% cumulative heat release) relationship: (I) no response zone (HCCI-like combustion); (II) negative CA50 slope zone: (early PPCI mode); and (III) positive CA50 slope zone (late PPCI mode).
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
X