Refine Your Search


Search Results

Viewing 1 to 11 of 11
Technical Paper

Determining Off-cycle Fuel Economy Benefits of 2-Layer HVAC Technology

This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state.
Technical Paper

Development of Variable Temperature Brake Specific Fuel Consumption Engine Maps

Response Surface Methodology (RSM) techniques are applied to develop brake specific fuel consumption (BSFC) maps of a test vehicle over standard drive cycles under various ambient conditions. This technique allows for modeling and predicting fuel consumption of an engine as a function of engine operating conditions. Results will be shown from Federal Test Procedure engine starts of 20°C, and colder conditions of -7°C. Fueling rates under a broad range of engine temperatures are presented. Analysis comparing oil and engine coolant as an input factor of the model is conducted. Analysis comparing the model to experimental datasets, as well as some details into the modeling development, will be presented. Although the methodology was applied to data collected from a vehicle, the same technique could be applied to engines run on dynamometers.
Technical Paper

Investigating Steady-State Road Load Determination Methods for Electrified Vehicles and Coordinated Driving (Platooning)

Reductions in vehicle drive losses are as important to improving fuel economy as increases in powertrain efficiencies. In order to measure vehicle fuel economy, chassis dynamometer testing relies on accurate road load determinations. Road load is currently determined (with some exceptions) using established test track coastdown testing procedures. Because new vehicle technologies and usage cases challenge the accuracy and applicability of these procedures, on-road experiments were conducted using axle torque sensors to address the suitability of the test procedures in determining vehicle road loads in specific cases. Whereas coastdown testing can use vehicle deceleration to determine load, steady-state testing can offer advantages in validating road load coefficients for vehicles with no mechanical neutral gear (such as plug-in hybrid and electric vehicles).
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Journal Article

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes.
Technical Paper

Simplified Methodology for Modeling Cold Temperature Effects on Engine Efficiency for Hybrid and Plug-in Hybrid Vehicles

For this work, a methodology of modeling and predicting fuel consumption in a hybrid vehicle as a function of the engine operating temperature has been developed for cold ambient operation (-7°C, 266°K). This methodology requires two steps: 1) development of a temperature dependent engine brake specific fuel consumption (BSFC) map, and, 2) a data-fitting technique for predicting engine temperature to be used as an input to the temperature dependent BSFC maps. For the first step, response surface methodology (RSM) techniques were applied to generate brake specific fuel consumption (BSFC) maps as a function of the engine thermal state. For the second step, data fitting techniques were also used to fit a simplified lumped capacitance heat transfer model using several experimental datasets. Utilizing these techniques, an analysis of fuel consumption as a function of thermal state across a broad range of engine operating conditions is presented.
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

Tahoe HEV Model Development in PSAT

Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

The Impact of Cellulosic Ethanol on the Performance and Emissions of a Circle Track Race Car

Ethanol has received both positive and negative attention as a renewable fuel for spark ignition engines. Studies of ethanol have shown improved volumetric efficiency, knock tolerance, and favorable burn curves[1]. Nevertheless, little research has been published exploring the impact of ethanol blends on race engine performance coupled with the impact on well-to-wheels (WTW) greenhouse gases, emissions, and petroleum reduction. In this work, a circle track race vehicle powered by a GM Performance Parts 6.2L OHV CT-525 engine was tested using 100 octane race fuel and E85 over a matrix of configurations. Carburetion vs. fuel injection configurations were benchmarked with both fuels, with the addition of 100- and 300-cells-per-inch catalytic convertors. Testing involved both dynamometer testing and on-track testing utilizing a portable emissions measurement system.