Refine Your Search

Topic

null

Search Results

Viewing 1 to 16 of 16
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Technical Paper

Determining Off-cycle Fuel Economy Benefits of 2-Layer HVAC Technology

2018-04-03
2018-01-1368
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state.
Technical Paper

Development of Variable Temperature Brake Specific Fuel Consumption Engine Maps

2010-10-25
2010-01-2181
Response Surface Methodology (RSM) techniques are applied to develop brake specific fuel consumption (BSFC) maps of a test vehicle over standard drive cycles under various ambient conditions. This technique allows for modeling and predicting fuel consumption of an engine as a function of engine operating conditions. Results will be shown from Federal Test Procedure engine starts of 20°C, and colder conditions of -7°C. Fueling rates under a broad range of engine temperatures are presented. Analysis comparing oil and engine coolant as an input factor of the model is conducted. Analysis comparing the model to experimental datasets, as well as some details into the modeling development, will be presented. Although the methodology was applied to data collected from a vehicle, the same technique could be applied to engines run on dynamometers.
Technical Paper

Investigating Steady-State Road Load Determination Methods for Electrified Vehicles and Coordinated Driving (Platooning)

2018-04-03
2018-01-0649
Reductions in vehicle drive losses are as important to improving fuel economy as increases in powertrain efficiencies. In order to measure vehicle fuel economy, chassis dynamometer testing relies on accurate road load determinations. Road load is currently determined (with some exceptions) using established test track coastdown testing procedures. Because new vehicle technologies and usage cases challenge the accuracy and applicability of these procedures, on-road experiments were conducted using axle torque sensors to address the suitability of the test procedures in determining vehicle road loads in specific cases. Whereas coastdown testing can use vehicle deceleration to determine load, steady-state testing can offer advantages in validating road load coefficients for vehicles with no mechanical neutral gear (such as plug-in hybrid and electric vehicles).
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

2017-03-28
2017-01-0157
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Technical Paper

MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

2016-04-05
2016-01-0230
The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was expanded by including a newly developed coolant loop solution method aimed at reducing the simulation effort for complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by MAHLE Inc. and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2°C and 43°C.
Technical Paper

Modeling of an Electric Vehicle Thermal Management System in MATLAB/Simulink

2015-04-14
2015-01-1708
Electric vehicles (EVs) need highly optimized thermal management systems to improve range. Climate control can reduce vehicle efficiency and range by more than 50%. Due to the relative shortage of waste heat, heating the passenger cabin in EVs is difficult. Cabin cooling can take a high portion of the energy available in the battery. Compared to internal combustion engine-driven vehicles, different heating methods and more efficient cooling methods are needed, which can make EV thermal management systems more complex. More complex systems typically allow various alternative modes of operation that can be selected based on driving and ambient conditions. A good system simulation tool can greatly reduce the time and expense for developing these complex systems. A simulation model should also be able to efficiently co-simulate with vehicle simulation programs, and should be applicable for evaluating various control algorithms.
Journal Article

On-Road Validation of a Simplified Model for Estimating Real-World Fuel Economy

2017-03-28
2017-01-0892
On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle’s fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of “off-cycle credits” that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-04-14
2020-01-1252
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility.
Technical Paper

Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

2007-04-16
2007-01-1194
A new type of solar-reflective glass that improves reflection of the near-infrared (NIR) portion of the solar spectrum has been developed. Also developed was a prototype solar-reflective paint that increases the NIR reflection of opaque vehicle surfaces while maintaining desired colors in the visible portion of the spectrum. Both of these technologies, as well as solar-powered parked car ventilation, were tested on a Cadillac STS as part of the Improved Mobile Air Conditioning Cooperative Research Program (I-MAC). Significant reductions in interior and vehicle skin temperatures were measured. The National Renewable Energy Laboratory (NREL) performed an analysis to determine the impact of reducing the thermal load on the vehicle. A simplified cabin thermal/fluid model was run to predict the potential reduction in A/C system capacity. The potential reduction in fuel use was calculated using a vehicle simulation tool developed by the U.S. Department of Energy (DOE).
Technical Paper

Simplified Methodology for Modeling Cold Temperature Effects on Engine Efficiency for Hybrid and Plug-in Hybrid Vehicles

2010-10-25
2010-01-2213
For this work, a methodology of modeling and predicting fuel consumption in a hybrid vehicle as a function of the engine operating temperature has been developed for cold ambient operation (-7°C, 266°K). This methodology requires two steps: 1) development of a temperature dependent engine brake specific fuel consumption (BSFC) map, and, 2) a data-fitting technique for predicting engine temperature to be used as an input to the temperature dependent BSFC maps. For the first step, response surface methodology (RSM) techniques were applied to generate brake specific fuel consumption (BSFC) maps as a function of the engine thermal state. For the second step, data fitting techniques were also used to fit a simplified lumped capacitance heat transfer model using several experimental datasets. Utilizing these techniques, an analysis of fuel consumption as a function of thermal state across a broad range of engine operating conditions is presented.
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

Tahoe HEV Model Development in PSAT

2009-04-20
2009-01-1307
Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

The Impact of Cellulosic Ethanol on the Performance and Emissions of a Circle Track Race Car

2013-04-08
2013-01-1149
Ethanol has received both positive and negative attention as a renewable fuel for spark ignition engines. Studies of ethanol have shown improved volumetric efficiency, knock tolerance, and favorable burn curves[1]. Nevertheless, little research has been published exploring the impact of ethanol blends on race engine performance coupled with the impact on well-to-wheels (WTW) greenhouse gases, emissions, and petroleum reduction. In this work, a circle track race vehicle powered by a GM Performance Parts 6.2L OHV CT-525 engine was tested using 100 octane race fuel and E85 over a matrix of configurations. Carburetion vs. fuel injection configurations were benchmarked with both fuels, with the addition of 100- and 300-cells-per-inch catalytic convertors. Testing involved both dynamometer testing and on-track testing utilizing a portable emissions measurement system.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
X