Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Durability Improvement of Track Rod in Commercial Vehicle Operating in Off-Road Application

With advancement of technology, better safety and higher vehicle reliability is primary requirement of end customer especially in public transportation. Hence there exist challenges in design and development of steering system for long haulage and tipper application. In the steering system, track rod is used to steer both the front tyre under different operating condition assisted by power steering system. This paper deals with the failures observed on track rod in long haulage and tipper application with loading conditions. Also the methodology adapted to resolve the field failures.
Technical Paper

Evolution of Bus Design in India

Buses have been main means of mass transport in organized as well as unorganized sectors in India. Though the art and science of Chassis Designing had been practiced and matured by all Indian OEMs, Body design had long not been accorded high priority by them. Till 1989, there was no comprehensive set of rules enforced. Bus designs were developed with scant regard for safety and emission. OEMs sold their products in the form of drive away chassis and the Body Design & Body Building was largely left to Body Builders, many of whom employed poor design, build and quality control practices. Spurious materials, parts, non-uniform construction resulted in number of accidents and many of them were fatal. Central Motor Vehicle Rules (CMVR) kicked-in 1st July 1989. With roll out of CMVR, various safety related features like entry/exit door, emergency exits, window frames, their locations, dimensions and designs were defined.
Technical Paper

Field Failure Simulation of a Non-reactive Suspension Tie Rod for Heavy Commercial Vehicle Using a Road Simulator

The suspension system in a vehicle isolates the frame and body from road shocks and vibrations which would otherwise be transferred to the passengers and goods. Heavier goods vehicles use tandem axles at the rear for load carrying. Both the axles should be inter-connected to eliminate overloading of any one axle when this goes over a bump or a ditch. One of the inter-connecting mechanism used is leaf spring with tie rod, bell crank & linkages, when the first rear axle moves over a bump, the linkages equalize the loading on the second rear axle. This paper details about the failure analysis methodology to simulate the tie rod field failure using a six poster road simulator and to identify the root cause of the failure and further corrective actions.