Refine Your Search

Topic

Author

Search Results

Technical Paper

A Structural Analysis Approach for Engine Noise Source Identification and Refinement

2017-06-05
2017-01-1799
Engine noise reduction is one of the highest priorities in vehicle development from the viewpoint of meeting stringent noise regulations. Engine noise reduction involves identification of noise sources and suppression of noise by changing the response of sources to input excitations. Noise can originate from several mechanical sources in engine. The present work focuses on systematic study of the behavior or response of engine structure and its ancillaries to engine excitation and thereby assess their contribution to overall engine noise. The approach includes engine noise and vibration measurement and component ranking using engine noise and vibration measurement in a non-anechoic environment, structural analysis of engine including experimental modal testing of engine and its components, etc. Correlation of the above obtained results is performed to identify the noise sources. Later, ranking of critical components was performed based on results of cladding exercise.
Journal Article

Accelerated Lab Test Methodology for Steering Gearbox Bracket Using Fatigue Damage and Reliability Correlation

2017-04-11
2017-01-9177
In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
Technical Paper

Acoustic Characterization and Development of Advanced Integrated Mufflers

2013-01-09
2013-26-0102
Mufflers are devices installed within the exhaust system of most internal combustion engines to reduce the noise created by the engine. Mufflers may be broadly classified into two types based on the method by which they attenuate the engine noise. First being reflective type which works by the principle of destructive interference of acoustic pressure waves while the second type absorbs the acoustic energy of the exhaust resulting in noise reduction. To study the contribution of each, Design of Experiments (DOE) was carried out for individual elements. Based on this, prototypes were manufactured to accommodate different configuration changes specified in the DOE. For all the prototypes, Insertion Loss (IL) and Transmission Loss (TL) tests are conducted and the results are analyzed to yield the contribution of each acoustic element towards the overall exhaust noise attenuation by the muffler of interest.
Technical Paper

Assessment of Ride in a Heavy Commercial Truck Using Numerical Simulation Methods and Correlation with Test

2013-01-09
2013-26-0151
Demand for a refined Heavy Commercial Vehicle (HCV) is increasing due to rapid Indian economic growth, while the operating conditions and road infrastructures are still in a transition state of development. The same vehicle model will be operated in a range of operating road conditions like mining sites, construction sites, and highways with varying payloads and speeds by customers that are spread across the country. This variety of road inputs, payloads and speeds has made ride tuning as one of the major challenging process in the development process. This paper describes the attempt to assess ride comfort of HCV with fully suspended cab using numerical based simulation tools and its correlation with physical test results. The best suspension combination was finalized based on vertical and pitch acceleration at Center of Gravity (CG) of the cab. The trend of vertical acceleration obtained from the virtual model was correlated with the same obtained from physical test.
Technical Paper

Composite Gas Cylinders for Automotive Vehicles - Current Status of Adoption of Technology and Way Forward

2013-01-09
2013-26-0074
With increasing concern on energy security and energy efficiency, automobile industry has been conducting many research on technologies aimed at reducing weight and reducing fuel consumption thereby reducing carbon footprint of the vehicle without compromising safety, efficiency and operational ability. Alternative fuel vehicles such as Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), Hydrogen, Hydrogen-CNG (HCNG) blends and Liquefied Natural Gas (LNG) vehicles are some of the best solutions to minimize the dependence on fossil fuels which are depleting fast. Gas cylinders are the heavier portion of alternative fuel systems which adds more weight to vehicle unladen weight. In search of innovative materials for gas cylinders, composite materials have been the front runner in reducing weight of the vehicle, thereby reducing fuel consumption significantly.
Technical Paper

Cost effective and Sustainable Alternate Material for Air Brake Tubings (ABT) in Commercial Vehicles

2014-09-30
2014-01-2409
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time.
Journal Article

Design and Analysis of Lifting Pusher Drop Axle for Heavy Commercial Vehicle

2017-04-11
2017-01-9176
Lifting axles are auxiliary axles that provide increased load carrying capacity in heavy commercial vehicles. Lift axle gives better fuel efficiency as well as it reduces the operational costs by means of increasing the loading carrying capacity. These axles are raised when the vehicle is in unloaded condition, thus increasing the traction on remaining wheels and reducing the tire wear which in turn lower down the maintenance cost of the vehicle. Lifting height and force requires to lift the whole mechanism and are two main considerable factors to design the lifting axle mechanism. Although in India currently, the use of lift mechanism of single tire with continuous axle is more common. But in the case of pusher axle, continuous axle is unable to lift more after certain height because of the draft angle of the propeller shaft, and single tire axle which has less load carrying capacity up to 6T (Tons).
Technical Paper

Design and Application of ECU Controlled Constant Pressure Exhaust Brake on 5.7 l Engine for ICV Application

2013-01-09
2013-26-0125
To share the excessive load on the service brakes and for safety of the engine valve trains in downhill gradients heavy duty diesel engines are installed with exhaust brake. The duty cycle of an engine is high in mid-range speeds, thus an exhaust brake system with higher braking power at mid- range speeds is required. Automatic actuation of exhaust brake will ensure effective utilization of the available engine braking power and safety. A higher braking efficiency will also lead to improved vehicle downhill performance. This calls for design and application of constant pressure exhaust brake controlled through Electronic Control Unit (ECU) of the vehicle. In the present work, an attempt to applicate constant pressure exhaust brake controlled through ECU of the vehicle on 5.7 l heavy duty diesel engine was made. The limitations of the system were reviewed. A 1-D thermodynamic simulation was used to predict the performance of exhaust brake.
Technical Paper

Design and Development of Bimetal Brake Drum to Improve Heat Dissipation and Weight Reduction

2014-09-30
2014-01-2284
Automotive component light weighing is one of the major goals for original equipment manufacturers (OEM's) globally. Significant advances are being made in developing light-weight high performance components. In order to achieve weight savings in vehicles, the OEM's and component suppliers are increasingly using ultra-high-strength steel, aluminum, magnesium, plastics and composites. One way is to develop a light weight high performance component through multi material concept. In this present study, a bimetal brake drum of inner ring cast iron and outer shell of aluminum has been made in two different design configurations. In two different designs, 40 and 26% weight saving has been achieved as compared to conventional gray cast iron brake drum. The component level performance has been evaluated by dynamometer test. The heat dissipation and wear behavior has been analyzed. In both designs, the wear performance of the bimetal brake drum was similar to the gray cast iron material.
Technical Paper

Design and Weight Optimization of an Automobile Link - A Case Study

2013-01-09
2013-26-0078
A case study was conducted on the design, optimization and material replacement for an automobile suspension link. The link is part of a four bar mechanism. The mechanism was developed in Adams/Car® and multibody simulation was carried out on it. The joint forces arrived from the simulation were exported for finite element analysis of the components in OptiStruct®. Finally, topology and shape optimization was conducted to reduce the weight of the original component. A feasibility study was also carried out to replace the fabricated steel link with a heat treated cast iron link. Heat treated cast iron being lighter than steel, ensures reduction in weight without compromising on strength. The experiment resulted in a feasible optimized shape which was 32% lighter than the current shape of the link being used in the vehicle, while keeping the stresses and displacements within limits.
Technical Paper

Determination of Climatic Boundary Conditions for Vehicular Real Driving Emission Tests

2019-04-02
2019-01-0758
Vehicular Emission testing is gaining importance over the past years in the wake of requirements for real driving emissions with implementation of RDE packages across Europe / USA and various developing countries. Extending the same concept for other countries poses slight challenges in terms of geographical and climatic conditions prevailing in the country, where the climatic conditions are differing from Europe / USA. It is a challenge to accept the same boundary conditions as in Europe, at the same time the challenge is to find a threshold number in a more scientific manner. This study concentrates on determination and recommendation of thresholds for ambient temperature and altitude. The basis for temperature threshold would be to determine the percentage of time the temperature exceeded beyond the threshold over year in the country. The basis for Altitude is considered based on the percentage of total length of roads beyond the threshold altitude limit.
Technical Paper

Durability Analysis of a Bus by Virtual Test Model (VTM)

2013-09-24
2013-01-2378
In this work, durability of the bus structure is evaluated with a Virtual Test Model (VTM).Full vehicle Multi Body Dynamics (MBD) model of the bus is built, with inclusion of flexibility of the bus structure to capture structural modes. Component mode synthesis method is used for creation of flexible model for use in MBD. Load extraction is done by performing MBD analysis with measured wheel inputs. Modal Superposition Method (MSM) is employed in FE along with these extracted loads for calculation of modal transient dynamic stress response of the structure. e-N based fatigue life is estimated. The estimated fatigue life from the modal superposition method show good correlation with the physical test results done in 6-poster test rig.
Technical Paper

Durability Enhancement of Spring Seat in Bogie Suspension

2013-11-27
2013-01-2848
Spring seat plays major role in bogie suspension; which is guiding and controlling the leaf spring for better suspension and also to withstand the compressive load from leafs. Currently used spring seats are failing frequently in medium and heavy duty vehicles, which lead to customer concerns by higher idle time and part replacement cost. Thickness of the spring seat can't be increased by large extent due to packaging constraints in the vehicle. Stress levels identified by FEA method are found higher than the current material capacity. With these constraints, the spring seat has been re-designed with improved strength and ductility of material by modern technology - Austempered Ductile Iron (ADI). The parts have been developed and assembled in various tipper applications and performance was studied. The developed spring seat shows five times superior durability compare to existing design.
Technical Paper

Evaluation of Bus Ventilation Methods Using CFD

2013-01-09
2013-26-0043
Non air-conditioned buses constitute a major portion of public transportation facilities in many countries across the world. Inadequate cabin air circulation is a major cause of passenger discomfort in these buses. The aim of this study is to model the air flow pattern inside the passenger compartment of a bus and to establish the effect of solutions such as roof vents in improving the air circulation. RANS based CFD simulations with Shear Stress Transport (SST) turbulence model have been carried out using a commercial CFD solver. The CFD methodology has been verified by comparing results with experimentally validated LES simulation results available in literature. The vehicle model used in this study was the shell structure of a bus with an overall length of 7 m and a wheel base of 3.9 m. Simulations were carried out for a four vent configuration which showed an increase of 131% in the average in-cabin air velocity over the baseline model without any roof-vents.
Technical Paper

In-Cylinder Combustion Control Strategy to Meet Off-Road Emission Norms with Conventional Mechanical Fuel Injection System

2014-10-13
2014-01-2648
Off-road BS III CEV (US-TIER III equivalent) emission regulations for diesel engines (i.e. Construction Equipment Vehicles) in India demands a technology upgrade to achieve a large reduction in NOx (>50%) and Particulate Matter (>50%) compared to BS II CEV emission levels. EGR is a widely accepted technology for NOx reduction in off-road engines due to lower initial and operating costs. But EGR has its own inherent deficiency of poor thermal efficiency due to lack of oxygen and further increase in soot adding complexity of meeting PM Emissions. Hence an engine meeting BS III CEV norms without EGR/SCR technologies with low initial investment is most desired solution for Indian off-road segment. This work deals with the development of an off-road diesel engine rating from 56 to 74 kW, focused mainly on in-cylinder optimization with the aid of optimum injection and charging strategies.
Technical Paper

Interior Noise Refinement in an ICV Bus through Driveline Torsional Vibration Analysis

2018-06-13
2018-01-1472
With a push for urbanization across cities, there is an increased demand for mobility in public transportation especially buses which are provided through state transport undertakings. Hence, the expectations of this class of vehicles will be high in terms of quality and comfort to the passengers. The noise inside the passenger area of the bus becomes an important parameter, which sets apart a bus manufacturer from its competitors. The driveline of the bus is the system responsible for the transfer of power from engine to the wheels. The noise and vibration problems associated with it are detected only in the late stages of the design chain, when all its elements are tested together over a wide range of conditions. Since, calibration of engine and the selection of transmission is freezed in early stages, satisfying power and torque requirements, the only viable option left to address the problem is by optimizing the clutch parameters.
Technical Paper

Manufacturing Execution System for Process Improvement

2009-10-06
2009-01-2855
In an era of global manufacturing and reduced costs, it is imperative that the manufacturing floor is visible to top management in a boardroom to enable them to make key decisions. Manufacturing Execution System (MES) is a method of connecting the shop floor to the top floor covering the complete gamut of activities from production sequence to finished goods. It aims to reduce the delay in transmitting production related data by linking the Production environment, Quality management, IT systems and Delivery. At Ashok Leyland’s Commercial Vehicle manufacturing facility in Ennore, India, an engine and axle components machine shop have been networked and data pertaining to production of Cylinder Block, Cylinder Head, Camshaft, Crankshaft, Axle Arm and Axle Beam components are accessible from anywhere in the company irrespective of location.
Technical Paper

Methodology Development for Torsional Vibration Measurement and Processing in Powertrains

2015-06-15
2015-01-2278
Torsional vibration is a characteristic phenomenon of automotive powertrains. It can have an adverse impact on powertrain related noise as well as the durability of transmission and drivetrain components. Hence minimizing torsional vibration levels associated with powertrains has become important. In this context, accurate measurement and representation of angular acceleration is of paramount importance. A methodology was developed for in-house vehicle level torsional vibration measurement, analysis and representation of results. The evaluation of torsional vibration has two major aspects. First, the acquisition of raw rotational data and secondly, the processing of acquired data to arrive at usable information from which inferences and interpretations can be made about the behavior of the rotating element. This paper describes the development process followed for establishing a torsional vibration evaluation methodology.
Technical Paper

Modelling and Experimental Study of Internal EGR System for NOx Control on an Off-Road Diesel Engine

2014-10-13
2014-01-2645
This study deals with the development of an internal EGR (Exhaust Gas Recirculation) system for NOx reduction on a six cylinder, turbocharged intercooled, off-road diesel engine based on a modified cam with secondary lift. One dimensional thermodynamic simulation model was developed using a commercially available code. MCC heat release model was refined in the present work by considering wall impingement of the fuel as given by Lakshminarayanan et al. The NOx prediction accuracy was improved to a level of 90% by a generic polynomial fit between air excess ratio and prediction constants. Simulation results of base model were correlating to more than 95% with experimental results for ISO 8178 C1 test cycle. Parametric study of intake and exhaust valve events was conducted with 2IVO (Secondary Intake Valve Opening) and 2EVO (Secondary Exhaust Valve Opening) methods. Combinations of different opening angles and lifts were chosen in both 2IVO and 2EVO methods for the study.
Technical Paper

Multi-Axis Simulation Test for Two-Wheeler Carrier Structure of a Commercial Vehicle Using Accelerated Road Load Data

2017-03-28
2017-01-0218
In the present scenario, delivering right product at the right time is very crucial in automotive sector. Today, most of the OEMs have started to produce FBS (Fully Build Solution) such as oil tankers, mining tippers and two-wheeler carriers based on the market requirements. During product development phase, all automotive components undergo stringent validation protocol either in on-road or laboratory which consumes most of the product development time. This project is focused on developing validation methodology for two-wheeler carrier structure (deck) of a commercial vehicle. For this, road load data were acquired in the typical routes of customers at different loading conditions. Roads were classified as either good or bad based on the axle acceleration. To shorten the test duration, actual road load data was compressed using strain based damage editing techniques. The spectrum and transmissibility of acceleration signals at the decks were analyzed to select a deck for validation.
X