Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Theoretical Approach towards the Self-Correcting Open Jet Wind Tunnel

2014-04-01
2014-01-0579
Open jet wind tunnels are normally tuned to measure “correct” results without any modifications to the raw data. This is an important difference to closed wall wind tunnels, which usually require wind tunnel corrections. The tuning of open jet facilities is typically done experimentally using pilot tunnels and adding final adjustments in the commissioning phase of the full scale tunnel. This approach lacked theoretical background in the past. There is still a common belief outside the small group of people designing and using open jet wind tunnels, that - similar to closed wind tunnels, which generally measure too high aerodynamic forces and moments without correction - open jet wind tunnels measure coefficient too low compared to the real world. The paper will try to show that there is a solid physical foundation underlying the experimental approach and that the expectation to receive self-correcting behavior can be supported by theoretical models.
Technical Paper

Active Noise Control for the 4.0 TFSI with Cylinder on Demand Technology in Audi's S-Series

2012-06-13
2012-01-1533
To significantly increase fuel efficiency while keeping power and performance of its signature S models, AUDI developed a new 4.0 TFSI engine with Cylinder on Demand technology and introduced it with its new S6, S7 and S8 models. To manage upcoming NVH issues due to this new technology and keep the intended sporty V8 note of the engine under all operating conditions, a broad range of new and advanced technologies was introduced with these vehicles. This paper focusses on the Active Noise Control system and its development. It describes the ANC system from a control theory perspective in addition to the acoustical perspective. Special features of the system include the availability of multiple tunings (4/8 cylinder mode) to support the specific overall sound character and the fast switching process as switching between different cylinder configurations might be as fast as 300 ms. In addition, the system also includes specific features that allow an advanced audio system diagnosis.
Technical Paper

Correlation-Based Transfer Path Analysis for Brake System-Induced Interfering Noise in the Vehicle Interior

2021-05-11
2021-01-5044
1. The present work introduces an approach for the analysis of the noise propagation behavior of mechatronic brake systems in modern passenger vehicles. While on the one hand, the number of features realized through the mechatronic brake system is strongly increasing; on the other hand, a continuous reduction of the overall vehicle interior noise level can be observed. This leads to an increase of interfering noise phenomena in the vehicle interior that customers might perceive as insufficient product quality. Therefore, noise elimination always plays an important role in vehicle development. The mechatronic brake system induces interfering noise that is transferred into the vehicle interior, differing from vehicle to vehicle and maneuver to maneuver. Supposedly, a wide frequency range, numerous components, and various branched transfer paths in the physical domains of airborne, structure-borne, and fluid-borne sound are involved in the noise propagation.
Journal Article

Experimental and Numerical Study of Heat Transfer at the Underbody of a Production Car

2014-04-01
2014-01-0582
The optimization of the flow field around new vehicle concepts is driven by aerodynamic and thermal demands. Even though aerodynamics and thermodynamics interact, the corresponding design processes are still decoupled. Objective of this study is to include a thermal model into the aerodynamic design process. Thus, thermal concepts can be evaluated at a considerably earlier design stage of new vehicles, resulting in earlier market entry. In a first step, an incompressible CFD code is extended with a passive scalar transport equation for temperature. The next step also accounts for buoyancy effects. The simulated development of the thermal boundary layer is validated on a hot flat plate without pressure gradient. Subsequently, the solvers are validated for a heated block with ground clearance: The flow pattern in the wake and integral heat transfer coefficients are compared to wind tunnel simulations. The main section of this report covers the validation on a full-scale production car.
Technical Paper

Process Modeling in the Life Cycle Design - Environmental Modeling of Joining Technologies within the Automotive Industry -

1998-11-30
982190
For integrating Life Cycle Assessment into the design process it is more and more necessary to generate models of single life cycle steps respectively manufacturing processes. For that reason it is indispensable to develop parametric processes. With such disposed processes the aim could only be to provide a tool where parametric environmental process models are available for a designer. With such a tool and the included models a designer will have the possibility to make an estimation of the probable energy consumption and needed additive materials for the applied manufacturing technology. Likewise if he has from the technical point of view the opportunity, he can shift the applied joining technology in the design phase by changing for instance the design.
Technical Paper

Reliability of Engineering Methods in Heavy-Vehicle Aerodynamics

2017-08-25
2017-01-7001
The improved performance of heavy-duty vehicles as transport carriers is essential for economic reasons and to fulfil new emission standards in Europe. A key parameter is the aerodynamic vehicle drag. An enormous potential still exists for fuel saving and reducing exhaust emission by aerodynamic optimisation. Engineering methods are required for developments in vehicle aerodynamics. To assess the reliability of the most common experimental testing and numerical simulation methods in the industrial design process is the objective of this article. Road tests have been performed to provide realistic results, which are compared to the results obtained by scale-model wind tunnel experiments and time-averaged computational fluid dynamics (CFD). These engineering methods are evaluated regarding their deployment in the industrial development process. The investigations focus on the separated flow region behind the vehicle rear end.
Technical Paper

Simulating and Optimizing the Dynamic Chassis Forces of the Audi E-Tron

2020-09-30
2020-01-1521
With battery electric vehicles (BEV), due to the absence of the combustion process, the rolling noise comes even more into play. The BEV technology also leads to different concepts of how to mount the electric engine in the car. Commonly, also applied with the Audi e-tron, the rear engine is mounted on a subframe, which again is connected to the body structure. This concept leads to a better insulation in the high frequency range, yet it bears some problems in designing the mounts for ride comfort (up to 20Hz) or body boom (up to 70Hz). Commonly engine mounts are laid-out based on driving dynamics and driving comfort (up to 20Hz). The current paper presents a new method to find an optimal mount design (concerning the stiffness) in order to reduce the dynamic chassis forces which are transferred to the body (>20Hz). This directly comes along with a reduction of the sound pressure level for the ‘body boom’ phenomena.
Technical Paper

The Best Function for the Seat of a Passenger Car

1985-02-01
850484
In order to optimize the function of an automobile seat, its geometrical and physical properties must be designed so that the loads resulting from the body weight and ambient factors (such as vibration, forces arising from vehicle dynamics, climatic conditions) act on the body of the occupant in such a way that the stress to which it is subjected is kept to a minimum. The physically measurable loads subject the driver to stress, i.e. they act mainly by changing biological processes in the organism, and drivers of widely different body statures must be considered. So the “correct” seat will necessarily be a compromise. From a careful integration of all requirements using the latest techniques, it emerged that an all-foam seat cushion incorporating varying degrees of firmness could be used to advantage. In this way Audi succeeded relatively quickly in designing a seat arrangement with remarkably positive characteristics.
X