Refine Your Search

Topic

Author

Search Results

Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Aerodynamic Analysis of Passenger Car with Luggage Carrier (Roof Rack)

2019-01-09
2019-26-0067
Any change is vehicle exterior design, affects the aerodynamics characteristic. Generally different types of roof racks are attached on passenger vehicles to carry luggage which affects aerodynamic drag. The objective of this work is to perform aerodynamic analysis of ground vehicle with roof rack to investigate the change in drag coefficient. First, the aerodynamic analysis of a baseline passenger car model is performed with and without generic benchmarked roof rack at 100 kmph. Further analysis is carried out with different new designs of roof racks. Based on simulation result, a scaled down prototype model is fabricated and validated by using a wind tunnel test for optimum suitable case. The modelling of the vehicle is done in CATIA tool and simulation is carried out by using ANSYS Fluent.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks tool and the simulation has been carried out using ANSYS Fluent.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
Technical Paper

Comparative Analysis of Electromagnetic Radiated Emission for Electric Powertrain and Conventional Spark Ignition (SI) Powertrain

2024-01-16
2024-26-0133
Due to the transformation of the automotive industry from conventional vehicles to electric vehicles, new challenges have emerged concerning Electromagnetic Compatibility. Though the Radiated Emission limits in global regulation are the same for both types of powertrains of vehicles, however, due to the phenomena of conversion of high voltage to low voltage, rapid charging/discharging, and different components involved in electric powertrain, the Radiated Emission from electric vehicles give a strikingly different trend which is challenging to combat. When compared with the conventional Spark Ignition vehicle, many other electronic components of the electric vehicle stay in the mode of Power ON while in the “Ignition ON” steady state. This resulted in us observing a significant shift in the amplitude and frequency throughout the frequency band of Radiated Emission measurement.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Design & Validation of a High Speed Car With Respect to Aerodynamics & Body Styling

2013-11-27
2013-01-2824
An open wheeled open cockpit high speed car with 800 CC MPFI engine was developed validated and run at 105 kmph. The key focus was to build a car with superior aerodynamic characteristics especially in terms of drag. This work discusses in detail about the design and simulation of car using CFD package followed by Wind Tunnel testing. The design of high speed car starts with design of seat according to the ergonomics of the driver followed by the space frame. Based on the space frame designed, the body panels are sketched and CAD model is developed. The CAD model is imported in CFD package for virtual testing and validated through wind tunnel results. For this 1:3 scale model was manufactured using Rapid Prototyping.
Technical Paper

Design and Development of 3- Cylinder: 75 kW/liter, High Power Density Diesel Engine for Passenger Car Application to Meet Euro IV/V Emission Norms

2011-01-19
2011-26-0033
To meet the latest trends in internal combustion engines pertaining efficiency, emissions and durability, downsizing of the engine has become the key focus area. This paper describes about a robust, reliable and an integrated approach used in design and development of state of art high power density/ high speed engine developed from the concept, which can be adopted for passenger car and LCV application. A three-cylinder, 1.5 liter displacement diesel engine, fully balanced is being designed with an objective to produce 115kW @ 4200 rpm, delivering a specific power output over 75 kW/liter, which is at par with a contemporary class of specification in it. In the first stage, a derated version of 75 kW (50 kW/liter) with Euro-IV and Euro-V specifications is targeted aiming at smaller car and light motor vehicle segment and a prime-mover for hybrid application.
Technical Paper

Design and Development of Radiator Fan for Automotive Application

2012-04-16
2012-01-0555
A methodology for design and development of radiator cooling fan is developed with an objective to improve underhood thermal management. For this purpose an Axial Fan Design Software has been developed which is based on Arbitrary Vortex Flow theory. The software is useful for obtaining initial blade design for the given basic functional requirements in terms of Airflow, Pressure Rise and Speed which defines the operating point of the fan. CFD analysis of the initial fan design is then carried out to predict the fan performance curve. Computation model resembles a fan set up in a wind tunnel. Further, Parametric Optimization is carried out using CFD to meet the functional requirements. A Rapid Prototype sample of the optimized fan design is manufactured and tested in a fan test rig made as per AMCA 210-99 standard to evaluate the fan performance curve and the power consumption.
Technical Paper

Development of Indigenous Automated System to Evaluate Clutch Performance Under Real World Conditions

2017-01-10
2017-26-0320
Automotive clutches form the most important component in the drive line which acts both as torque transmitter and as a fuse. Testing clutches, in the vehicle assembly, poses certain limitations. In this context the automotive clutch, as a component, needs to be evaluated to determine various performance parameters like wear, load loss, slipping torque, slipping time etc. to meet desired design, performance and durability requirements. It is very important to simulate engine and vehicle conditions in terms of operating environment, speed and load accurately while evaluating above parameters. This creates lot of challenges to design and develop a test rig capable of evaluating complete clutch performance. Very limited options are available for such test rigs worldwide. In India, no manufacturer provides such indigenous test rigs. Developing an indigenous, cost effective clutch test rig was the need of the hour.
Technical Paper

Development of Methodology for Accelerated Validation of Axle Components in Relation to Static Load Capacity

2024-01-16
2024-26-0373
The Indian automotive industry is striving towards more safe and durable vehicles. A need was felt to study the effect of changes in axle static loads on fatigue life of the axle components. Also, there was a need to develop generic test method, as there are no test standards or generic methods available in public domain for fatigue testing of commercial vehicle axles. The study was carried out to check direct effect of change in axle loads on various connections on axle, effect of suspension configuration and force distribution, Vehicle dynamics, etc. In this paper, an India specific generic load spectra was evaluated for accelerated laboratory validation. Paper discusses the methodology as; study of heavy commercial vehicle systems, road load data collection on identified test vehicles w.r.t. test matrix finalized, India specific test loads and load spectra development, normalization of axle load spectra w.r.t to static axle weights and arriving at test guidelines.
Journal Article

Development of Multi Cylinder Turbocharged Natural Gas Engine for Heavy Duty Application

2017-01-10
2017-26-0065
CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
Technical Paper

Development of Road to Lab Steering Test Rig (ROLAST)

2017-01-10
2017-26-0315
The Steering system is one of the most safety critical systems in an automobile. With time the durability, reliability and the fine-tuning of the parameters involved in this subsystem have increased along with the competitiveness of the market. In a competitive market, accelerated testing is the key to shorter development cycles. It is observed that the majority of component manufacturers have a preference on vehicle level testing to achieve their development goals. The vehicle level trials are time consuming and lack the control and repeat-ability of a laboratory environment. This paper describes the development of a steering test rig designed to simulate the disturbances experienced on road within a controlled laboratory environment. The five axis steering rig would allow simulation of individual road wheel displacement along with steering wheel angle input and lateral steering rack displacements. The rig also is designed to be adaptable to a range of vehicle categories.
Technical Paper

Development of System Level Testing Method for Passenger Car Engine Mounts

2024-01-16
2024-26-0324
Engine mount is an integral part of any Internal Combustion engine. It is the medium which isolates the vibrations coming from engine being transferred to the chassis or body. Engine or power plant is the main source of unbalanced vibrations. The major role of an engine mount is to reduce those vibration levels, improve ride comfort and increase the life of an engine and its parts [1]. This work determines the Test methodology development for passenger car engine mounts in the Laboratory by using Multi-axial environment [2]. This explains the details of truly Multi-axial test rig development, Drive file creation and the Durability Testing with the maintained vehicle conditions by simulating field conditions in the laboratory. The Multi-axial test rig developed with incorporation of vehicle’s both Front Drive shafts torques and One Propeller shaft which simulates the Front wheel drives and the rear prop shaft torque.
Technical Paper

Experimentation for Evaluation of Real Driving Emission Test Routes in India for LDVs

2019-01-09
2019-26-0150
With introduction of Bharat Stage VI (BS VI) norms from 1st April 2020, automotive industry will observe one of most stringent Indian emission regulation implementation in line with International standards. The Bharat Stage VI (BS VI) regulation also mandates for Real Driving Emission (RDE) measurement from 1st April 2020 for data collection and subsequently establishment of RDE compliance Factor (CF) by 1st April 2023. Indian RDE test procedure will be largely based on European RDE with minor changes in terms of climatic conditions, traffic pattern, speed limit, topography, and vehicle population. For performing a successful RDE trial one of the most critical part is selection of a route on which all RDE boundary conditions can be met. This technical paper summarizes the outcome of RDE experiments carried out on Light Duty Vehicles (LDV) in the city of Pune, Mumbai, and Bangalore. The collected data was post processed using CO2 based Moving Average Window (MAW) method.
Technical Paper

Framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems

2024-01-16
2024-26-0022
Autonomous Emergency Braking (AEB) systems play a critical role in ensuring vehicle safety by detecting potential rear-end collisions and automatically applying brakes to mitigate or prevent accidents. This paper focuses on establishing a framework for the Verification & Validation (V&V) of Advanced Driver Assistance Systems (ADAS) by testing & verifying the functionality of a RADAR-based AEB ECU. A comprehensive V&V approach was adopted, incorporating both virtual and physical testing. For virtual testing, closed-loop Hardware-in-Loop (HIL) simulation technique was employed. The AEB ECU was interfaced with the real-time hardware via CAN. Data for the relevant target such as the target position, velocity etc. was calculated using an ideal RADAR sensor model running on the real-time hardware. The methodology involved conducting a series of test scenarios, including various driving speeds, obstacle types, and braking distances.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Technical Paper

Generation of Tire Digital Twin for Virtual MBD Simulation of Vehicles for Durability, NVH and Handling Evaluation

2024-01-16
2024-26-0301
With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment. The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models. Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation.
Technical Paper

Genesis of the “Automotive Homologation 4.0” Framework for India

2024-01-16
2024-26-0360
The term Industry 4.0 is well known in contemporary automotive landscape. It encompasses a smart integrated framework of IIoT (Internet of Things) and industrial automation with machine learning, artificial intelligence and big data analytics to arrive at optimal solutions to running the processes in a streamlined, efficient and effective manner. Industry 4.0 has assumed critical significance in the contemporary era of people working from remote locations to operate processes in order to build products, thereby ensuring business continuity. Consequently, it follows that if industry 4.0 is applied to automotive homologation activity, it will lead to a standardized evaluation, consistent fidelity of testing, accurate judgement of the product under test with regards to its certification, and most importantly, timed delivery to release in the market. The author hereby elucidates a unified Industry 4.0 Framework for Automotive homologation in India which is the need of the hour.
X