Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Engine Cooling Fan Noise and Vibration Problem Caused by a Switching Power Supply

2003-05-05
2003-01-1672
A 50 Hz Solid-State Relay (SSR) was used to provide pulse-width-modulated power to engine cooling fans for continuous speed control, to reduce airflow noise and improve efficiency. However, this caused the cooling fans to vibrate at the switching frequency and harmonics, thus degrading vehicle NVH performance. This paper describes the problem associated with SSR- powered cooling fans, including root-cause analysis, and identification of areas sensitive to vibration affected by the switching power supply. Based on our analysis, we found several solutions to the problem. Our production solution and some generic recommendations for shroud design are presented in the paper.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Parametric Analysis for the Design of Compact Heat Exchangers

2006-04-03
2006-01-1578
In this paper, the effects of heat exchanger design parameters are investigated. The ease study being investigated here is the parametric analysis of automotive radiator where the hot fluid is the engine coolant and the cold fluid is the ambient air. Key parameters that are considered are the air density, fin thickness, fins height and air temperature. Effect of air density may be a concern since heat exchangers are usually designed, for automotive applications, under atmospheric pressure conditions. Changes in altitude will cause a change in air density. Therefore, the performance of cooling system may be affected by elevation. In this analysis, however, it is shown that the change in air density has very limited or no effect on the cooling system. The fin dimensions play a key role in the overall effectiveness of a heat exchanger. Some cost saving ideas may include reducing fin dimensions such as fin thickness or fin height.
Technical Paper

Robust Engineering of Engine Cooling System

2003-03-03
2003-01-0149
This paper describes the use of robust engineering in engine cooling system design. 1-D thermal-fluid network simulation software has been used in conjunction with statistical variation analysis software. It shows how we can increase the reliability of an automotive engine cooling system by considering the variations of all factors of design. Design of experiment (DOE) and Monte Carlo simulation techniques have been used to optimize the engine cooling system design.
Technical Paper

TPE Radiator Components from Post Consumer Tires

2001-11-12
2001-01-3763
Over 250 million tires are scrapped in the United States each year. Tires have been a problematic scrap because they have been designed to resist destruction, and have a tendency to float upwards in landfills. Improper storage has resulted in tire fires1--an even more problematic environmental concern than unsightly piles which can serve as breeding grounds for insect vectors. A better solution is to recover materials for use in new components. Not only does this resolve the landfill issue, but it also serves to conserve resources, while returning an economic benefit to society. This paper traces the introduction of tire material recovery at NRI Industries and DaimlerChrysler Corporation (DCC), the development of the infrastructure and materials, and the launch of the Jeep Grand Cherokee thermoplastic elastomer (TPE) radiator seals, comprised of post consumer tire crumb.
X