Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

A Dynamic Filtration Model for the Power-shift Steering Transmission

2016-04-05
2016-01-1139
Within the hydraulic shifting circuit of power-shift steering transmission, the performance of filter is generally characterized by the theoretical filtration ratio. However in practical work, the actual filtration ratio is far less than the theoretical ratio. On the basis of investigation on the structural characteristics, the oil flowing distribution and the filter mechanisms, the re-filtering rate ω and recontaminative rate θ are defined to simulate the actual filtering process. Therefore, the dynamic filtration ratio is modelled and simulated in MATLAB/Simulink to investigate that how the filtering rate ω and θ influence the dynamic filtration ratio and the deviation between the dynamic ratio and theoretical ratio. Afterwards, the variation of dynamic filtration ratio is tested through a filtration experiment under the circumstances of various flow rate, temperature and pressure.
Technical Paper

A General Selection Method for the Compressor of the Hydrogen Internal Combustion Engine with Turbocharger

2017-03-28
2017-01-1025
Hydrogen is a promising energy carrier because it is characterized by a fast combustion velocity, a wide range of sources, and clean combustion products. A hydrogen internal combustion engine (H2ICE) with a turbocharger has been used to solve the contradiction of power density and control NOx. However, the selection of a H2ICE compressor with a turbocharger is very different from traditional engines because of gas fuel. Hydrogen as a gas fuel has the same volume as its cylinder and thus increases pressure and reduces the mass flow rate of air in cylinder for a port fuel injection-H2ICE (PFI-H2ICE). In this study, a general method involving a H2ICE with a turbocharger is proposed by considering the effect of hydrogen on cylinders. Using this method, we can calculate the turbocharged pressure ratio and mass flow rate of air based on the target power and general parameters. This method also provides a series of intake temperatures of air before calculation to improve accuracy.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Technical Paper

A Practical Calculation Method for Injection Pressure and Spray Penetration in Diesel Engines

1992-02-01
920624
Spray penetration for Diesel injectors, where injection pressure varies with time during the injection period, was calculated. In order to carry out this calculation, the discharge coefficients of the needle-seat opening passage and discharge hole in orifice-type Diesel nozzles were investigated separately. Simple empirical correlations were obtained between these coefficients and needle lift. Then, by introducing these correlations, the injection pressure, which is defined as the pressure in the sac chamber just upstream of the discharge hole, was either derived from measured fuel supply line pressure, or predicted by means of an injection system simulation. Finally, based on the transient injection pressure, spray tip penetration was calculated by taking the overall line which covers the trajectories of all fuel elements ejected during the injection period.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System

2008-06-23
2008-01-1742
In order to meet the need of high pressure common rail diesel engine, calibration for injection quantity and basic MAP of electronic-controlled injector are made. Combining with testing data, influencing factors for consistency and identity of injecting fuel in electronic-controlled injector are analyzed, in the condition of small quantity, controlled-pressure undulation quantity and injecting pulse revising are presented to achieve the respective demand. Primary basic map for common rail pressure and injecting fuel are fixed with alterable step method, and calibration of fuel quantity MAP is made on bench test. Finally test of electronic-controlled injector equipped in diesel engine is finished, testing result showed that calibration process and method are reasonable.
Technical Paper

A Study of Hydrogen Internal Combustion Engine EGR System

2014-04-01
2014-01-1071
NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely.
Technical Paper

A Study of the Adaptability of Three Way Catalytic Converter under Hydrogen-Gasoline Dual-Fuel Alternate Working Mode

2014-04-01
2014-01-1342
Nowadays, the world is facing severe energy crisis and environment problems. Development of hydrogen fuel vehicles is one of the best ways to solve these problems. Due to the difficulties of infrastructures, such as the hydrogen transport and storage, hydrogen fuel vehicles have not been widely used yet. As a result, Hydrogen-gasoline dual-fuel vehicle is a solution as a compromise. In this paper, three way catalytic converter (TWC) was used to reduce emissions of hydrogen-gasoline dual-fuel vehicles. On wide open throttle and load characteristics, the conversion efficiency of TWC in gasoline engine was measured. Then the TWC was connected to a hydrogen internal combustion engine. After switching the hydrogen and gasoline working mode, emission data was measured. Experiment results show that the efficiency of a traditional TWC can be maintained above 85%., while it works in a hydrogen-gasoline dual-fuel alternative working mode.
Technical Paper

A Test Bench for the Turbocharger Fatigue Life Based on the Self-Circulation

2015-04-14
2015-01-0429
The low cycle fatigue experiment is extensively used to test the reliability and durability of turbocharger. Low cycle fatigue test is mainly the switching between high and low speed. As the result of the experiment, the fatigue life is shorter as the difference between high and low speed becomes greater. In the traditional low cycle fatigue test, a large air compressor is needed to drive the turbocharger under different operating conditions, which consume large amounts of electric power. This paper presents a new experiment device which has double chambers and double turbochargers. This device can be self-circulating, without the large air compressor, to realize high and low speed switching on the premise of not exceeding the limitation of turbine entry temperature. First, a detailed model is established in GT-Power and self-circulation test data has been used to validate the model.
Technical Paper

A Visual Study of D.I. Diesel Combustion from the Under and Lateral Sides of an Engine

1986-09-01
861182
A high-speed photographic study is presented illustrating the influence of engine variables such as an introduced air swirl, the number of nozzle holes and the piston cavity diameter, on the combustion process in a small direct-injection (D.I.) diesel engine. The engine was modified for optical access from the under and lateral sides of the combustion chamber. This modification enabled a three-dimensional analysis of the flame motion in the engine. The swirling velocity of a flame in a combustion chamber was highest in the piston cavity, and outside the piston cavity it became lower at the piston top and at the cylinder head in that order. The swirl ratio of the flame inside the cavity radius attenuated gradually with piston descent and approached the swirl ratio outside the cavity radius, which remained approximately constant during the expansion stroke. Engine performance was improved by retarding the attenuation of the swirl motion inside the cavity radius.
Technical Paper

A computer-based simulation and test system for the calibration of EFI engine

2000-06-12
2000-05-0094
When the EFI system is used in a specific engine, lots of experiments are needed to optimize the control data (MAP). This work is time and financial consuming. This paper aims to develop a computer-based simulation and test system, which can produce the initial control MAP with good accuracy, and calibrate the ECU on-line. So the experiments are reduced and calibration is accelerated. In order to improve the accuracy of the initial control data, the mathematical models are built not only based on theoretical equations, but also on the control data of typical operation points, which is obtained by the on- line calibration of specific engines. This system can also perform some special calibrations, like "constant pulse width" and "square wave modulation."
Technical Paper

An Analysis of Droplets and Ambient Air Interaction in a D.I. Gasoline Spray Using LIF-PIV Technique

2002-03-04
2002-01-0743
Measurements of the droplet and ambient air velocities in and around a D.I. gasoline spray were made by combining the laser induced fluorescence (LIF) and the particle image velocimetry (PIV) techniques. Before the fuel spray was injected into a constant volume vessel, rhodamine B-water solution was injected into the ambient air by a swirl-type injector for dispersing the fine fluorescent liquid particles as tracers for the ambient air motion. The fuel spray was injected into the fluorescent tracer clouds by a D.I. gasoline injector and was illuminated by an Nd:YAG laser light sheet (wave length: 532 nm). The light scattered by the droplets in the fuel spray was the same as the Nd:YAG laser wavelength, whereas the light emitted by the fluorescent tracer clouds was at a longer wavelength.
Technical Paper

An Experimental Investigation on Combustion and Emissions Characteristics of Turbocharged DI Engines Fueled with Blends of Biodiesel

2005-05-11
2005-01-2199
Turbocharged and intercooled DI engines, fueled with different blends of biodiesel and diesel fuel, were chosen to conduct performance and emission tests on dynamometers. The properties of the test fuels were tested. The cylinder pressure and fuel injection pressure signals were recorded and combustion analysis was conducted. The engine exhaust emissions were measured. The results of the study indicated that HC, CO, PM and smoke emissions improvement was obtained. But there was an increase in fuel consumption and NOx emission, and a slight drop in power with the blends. The combustion analysis showed that biodiesel had a shorter ignition delay and a lower premixed combustion amount, but had an early start of injection caused by the fuel properties. The relationship between combustion and emissions was discussed.
Technical Paper

An Experimental Investigation on Removing PM and NOX Simultaneously from Diesel Exhaust

2008-06-23
2008-01-1793
In order to achieve simultaneous removal of particulate matters (PM) and NOX in diesel exhaust, a new kind of aftertreatment prototype has been developed. The prototype combined effects of static, cyclone, non-thermal plasma and hydrocarbon selective catalytic reduction. Experiments have been carried out with standard gases simulating diesel exhaust. Physical and chemical effects that took place in the prototype are as follows: the collection of PM by electrostatic-cyclone system, the oxidative combustion of PM, the selective catalytic reduction of NOX, and the reaction between PM and NOX. The effect of non-thermal plasma makes the density of NO decrease and that of NO2 increase, whereas, the amount of NOX remains the same. Employing catalyst coupled with non-thermal plasma debase the temperature by about 50◻, there the peak value of transform rate appears.
Technical Paper

An Experimental Study on Mixture Formation Process of Flat Wall Impinging Spray Injected by Micro-Hole Nozzle under Ultra-High Injection Pressures

2008-06-23
2008-01-1601
Increasing injection pressure and decreasing nozzle hole diameter have been proved to be two effective approaches to reduce the exhaust emissions and to improve the fuel economy. Recently, the micro-hole nozzles and ultra-high injection pressures are applicable in commercial Diesel engines. But the mechanism of these two latest technologies is still unclear. The current research aims at providing information on the spray and mixture formation processes of the micro-hole nozzle (d=0.08mm) under the ultra-high injection pressure (Pinj=300MPa). The flat wall impinging sprays were focused on and the laser absorption-scattering (LAS) technique was employed to obtain the qualitative and quantitative information at both atmospheric and elevated conditions. The spray parameters were collected, the mixing rate was discussed, and the effects of various parameters on mixture formation were clarified.
Technical Paper

An Insight Into Effect of Split Injection on Mixture Formation and Combustion of DI Gasoline Engines

2004-06-08
2004-01-1949
In the previous study of the authors, it was found that some benefits for the mixture preparation of DI gasoline engines can be offered by splitting the fuel injection, such as the phenomenon of high density liquid phase fuel piling up at the leading edge of the spray can be circumvented. In a further analysis, the vapor quantity in the “stable operating” range (equivalence ratio of vapor ϕv in a range of 0.7≤ϕv≤1.3) was significantly increased by the split injection compared to the single injection. In this work, the mechanism of the effect of the split injection on the mixture formation process was studied by combining the laser-sheet imaging, LIF-PIV and the LAS (Laser Absorption Scattering) technique. As a result, it is found that the spray-induced ambient air motion can help the formation of the more combustible mixture of the split injection whereas it played a minus role of diluting the spray by the single injection.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

An Optical Investigation on the Combustion Characteristics of Gasoline-Diesel Dual-Fuel Applications

2014-04-01
2014-01-1310
The combustion characteristics of gasoline-diesel dual-fuel in an electronic-controlled high pressure common rail optical engine were investigated under different diesel injection timings and gasoline/diesel ratios by a high-speed photography method. The experimental results show that the dual-fuel combustion process is influenced by diesel combustion and gasoline homogenous combustion, respectively, with bright yellow flames and blue flames observed in the combustion chamber. At a gasoline/diesel ratio of 0.91, the injection timing affects the ignition timing and combustion modes significantly. When the diesel injection timing is before −25° after top dead center (ATDC), advancing the injection timing tends to prolong the ignition delay and the gasoline-diesel dual-fuel combustion is similar to the pre-mixed charge compression ignition (PCCI) combustion with a rapid single-stage heat release.
X