Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

A General Selection Method for the Compressor of the Hydrogen Internal Combustion Engine with Turbocharger

2017-03-28
2017-01-1025
Hydrogen is a promising energy carrier because it is characterized by a fast combustion velocity, a wide range of sources, and clean combustion products. A hydrogen internal combustion engine (H2ICE) with a turbocharger has been used to solve the contradiction of power density and control NOx. However, the selection of a H2ICE compressor with a turbocharger is very different from traditional engines because of gas fuel. Hydrogen as a gas fuel has the same volume as its cylinder and thus increases pressure and reduces the mass flow rate of air in cylinder for a port fuel injection-H2ICE (PFI-H2ICE). In this study, a general method involving a H2ICE with a turbocharger is proposed by considering the effect of hydrogen on cylinders. Using this method, we can calculate the turbocharged pressure ratio and mass flow rate of air based on the target power and general parameters. This method also provides a series of intake temperatures of air before calculation to improve accuracy.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of Hydrogen Internal Combustion Engine EGR System

2014-04-01
2014-01-1071
NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study of the Adaptability of Three Way Catalytic Converter under Hydrogen-Gasoline Dual-Fuel Alternate Working Mode

2014-04-01
2014-01-1342
Nowadays, the world is facing severe energy crisis and environment problems. Development of hydrogen fuel vehicles is one of the best ways to solve these problems. Due to the difficulties of infrastructures, such as the hydrogen transport and storage, hydrogen fuel vehicles have not been widely used yet. As a result, Hydrogen-gasoline dual-fuel vehicle is a solution as a compromise. In this paper, three way catalytic converter (TWC) was used to reduce emissions of hydrogen-gasoline dual-fuel vehicles. On wide open throttle and load characteristics, the conversion efficiency of TWC in gasoline engine was measured. Then the TWC was connected to a hydrogen internal combustion engine. After switching the hydrogen and gasoline working mode, emission data was measured. Experiment results show that the efficiency of a traditional TWC can be maintained above 85%., while it works in a hydrogen-gasoline dual-fuel alternative working mode.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

A Test Bench for the Turbocharger Fatigue Life Based on the Self-Circulation

2015-04-14
2015-01-0429
The low cycle fatigue experiment is extensively used to test the reliability and durability of turbocharger. Low cycle fatigue test is mainly the switching between high and low speed. As the result of the experiment, the fatigue life is shorter as the difference between high and low speed becomes greater. In the traditional low cycle fatigue test, a large air compressor is needed to drive the turbocharger under different operating conditions, which consume large amounts of electric power. This paper presents a new experiment device which has double chambers and double turbochargers. This device can be self-circulating, without the large air compressor, to realize high and low speed switching on the premise of not exceeding the limitation of turbine entry temperature. First, a detailed model is established in GT-Power and self-circulation test data has been used to validate the model.
Technical Paper

A computer-based simulation and test system for the calibration of EFI engine

2000-06-12
2000-05-0094
When the EFI system is used in a specific engine, lots of experiments are needed to optimize the control data (MAP). This work is time and financial consuming. This paper aims to develop a computer-based simulation and test system, which can produce the initial control MAP with good accuracy, and calibrate the ECU on-line. So the experiments are reduced and calibration is accelerated. In order to improve the accuracy of the initial control data, the mathematical models are built not only based on theoretical equations, but also on the control data of typical operation points, which is obtained by the on- line calibration of specific engines. This system can also perform some special calibrations, like "constant pulse width" and "square wave modulation."
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

An Experimental Investigation on Combustion and Emissions Characteristics of Turbocharged DI Engines Fueled with Blends of Biodiesel

2005-05-11
2005-01-2199
Turbocharged and intercooled DI engines, fueled with different blends of biodiesel and diesel fuel, were chosen to conduct performance and emission tests on dynamometers. The properties of the test fuels were tested. The cylinder pressure and fuel injection pressure signals were recorded and combustion analysis was conducted. The engine exhaust emissions were measured. The results of the study indicated that HC, CO, PM and smoke emissions improvement was obtained. But there was an increase in fuel consumption and NOx emission, and a slight drop in power with the blends. The combustion analysis showed that biodiesel had a shorter ignition delay and a lower premixed combustion amount, but had an early start of injection caused by the fuel properties. The relationship between combustion and emissions was discussed.
Technical Paper

An Experimental Investigation on Removing PM and NOX Simultaneously from Diesel Exhaust

2008-06-23
2008-01-1793
In order to achieve simultaneous removal of particulate matters (PM) and NOX in diesel exhaust, a new kind of aftertreatment prototype has been developed. The prototype combined effects of static, cyclone, non-thermal plasma and hydrocarbon selective catalytic reduction. Experiments have been carried out with standard gases simulating diesel exhaust. Physical and chemical effects that took place in the prototype are as follows: the collection of PM by electrostatic-cyclone system, the oxidative combustion of PM, the selective catalytic reduction of NOX, and the reaction between PM and NOX. The effect of non-thermal plasma makes the density of NO decrease and that of NO2 increase, whereas, the amount of NOX remains the same. Employing catalyst coupled with non-thermal plasma debase the temperature by about 50◻, there the peak value of transform rate appears.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

An Optical Investigation on the Combustion Characteristics of Gasoline-Diesel Dual-Fuel Applications

2014-04-01
2014-01-1310
The combustion characteristics of gasoline-diesel dual-fuel in an electronic-controlled high pressure common rail optical engine were investigated under different diesel injection timings and gasoline/diesel ratios by a high-speed photography method. The experimental results show that the dual-fuel combustion process is influenced by diesel combustion and gasoline homogenous combustion, respectively, with bright yellow flames and blue flames observed in the combustion chamber. At a gasoline/diesel ratio of 0.91, the injection timing affects the ignition timing and combustion modes significantly. When the diesel injection timing is before −25° after top dead center (ATDC), advancing the injection timing tends to prolong the ignition delay and the gasoline-diesel dual-fuel combustion is similar to the pre-mixed charge compression ignition (PCCI) combustion with a rapid single-stage heat release.
Technical Paper

Analysis of Combustion and Particulate Emissions when Hydrogen is Aspirated into a Gasoline Direct Injection Engine

2010-04-12
2010-01-0580
A single-cylinder Gasoline Direct Injection Engine (GDI) engine with a centrally mounted spray-guided injection system (150 bar fuel pressure) has been operated with stoichiometric and rich mixtures. The base fuel was 65% iso-octane and 35% toluene; hydrogen was aspirated into a plenum in the induction system, and its equivalence ratios were set to 0, 0.02, 0.05 and 0.1. Ignition timing sweeps were conducted for each operating point. Combustion was speeded up by adding hydrogen as expected. In consequence the MBT ignition advance was reduced, as were cycle-by-cycle variations in combustion. Adding hydrogen led to the expected reduction in IMEP as the engine was operated at a fixed manifold absolute pressure (MAP). An engine model has also been set up using WAVE. Particulate Matter (PM) emissions were measured with a Cambustion DMS500 particle sizer.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

Boost System with Auxiliary Gas Turbine Used for Recovering Diesel Engine Power at Plateau Conditions

2015-04-14
2015-01-1136
A boost system with an auxiliary gas turbine used to recover diesel engine power at plateau conditions is proposed. System matching calculation, preliminary design, and performance simulation of the compressor with double parameter output are presented, as well as the preliminary design, flow simulation, and combustion process of the combustion chamber. Results show that the new system has better recovery performance and higher fuel economy potential than the simple charging scheme. For future research work, possible improvements and development direction are recommended.
X