Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

A Time-triggered CAN Network and Test Platform for Fuel Cell Bus

2008-06-23
2008-01-1534
As vehicle systems constantly grow in complexity and are subject to higher demands on performance, distributed control has become mainstream application in automotive industry. In a distributed control system, communication network connecting local controllers plays an important role. In this article, a fuel cell bus control system under development is introduced first. And then, traditional CAN and TTCAN network are analyzed for real-time performance respectively and TTCAN is chosen for its superiority. Subsequently, a TTCAN network is designed and implemented. Finally, a test platform for TTCAN network is devised and relevant platform experiments and on-board validation on the network are discussed.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

2009-06-11
2009-01-1668
The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Design and Control of Thermal Management System for the Fuel Cell Vehicle in Low-Temperature Environment

2020-04-14
2020-01-0851
In low-temperature environment, heat supply requires considerable energy, which significantly increases energy consumption and shortens the mileage of electric vehicle. In the fuel cell vehicles, waste heat generated by the fuel cell system can supply heat for vehicle. In this paper, a thermal management system is designed for a the fuel cell interurban bus. Thermal management strategy aiming at temperature regulation for the fuel cell stack and the passenger compartment and minimal energy consumption is proposed. System model is developed and simulated based on AMESim and Matlab/Simulink co-simulation. Simulation results show that the fuel cell system can provide about 78 % energy of maximum heat requirement in -20 °C ambient temperature environment.
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

2017-10-08
2017-01-2359
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

Injection Strategy Study of Compression Ignition Engine Fueled with Naphtha

2015-09-01
2015-01-1797
This study investigates the performance of a diesel engine fueled with naphtha under different load by varying injection parameters and exhaust gas recirculation (EGR) rate. The experiments were conducted on a 1.9-liter common rail diesel engine with a compression ratio of 17.5. Naphtha with a research octane number of 60.5 was tested. Three multi-injection strategies were designed. Each injection strategy, aided with EGR, conducts a characteristic combustion mode. Multi-injection strategies and single-injection strategy were tested and compared at one operating point under different main injection timing and EGR conditions. Results indicate that the well-designed multi-injection strategy has advantages over the single injection strategy in lowering noise, emissions and improving combustion efficiency. Among the three strategies, the strategy with 15-degree pilot timing and 2mg/cycle pilot injection could achieve both low NOx and PM emissions without sacrificing much fuel efficiency.
Journal Article

Modeling and Experiment Validation of the DC/DC Converter for Online AC Impedance Identification of the Lithium-Ion Battery

2017-03-28
2017-01-1198
The lithium-ion battery plays an important role in saving energy and lowering emissions. Many parameters like temperature have an influence on the characteristic of the battery and this phenomenon becomes more serious in an electric vehicle. In this paper, the application of a boost DC/DC converter to the battery system of high power for online AC impedance identification is proposed. The function of the converter is to inject a current excitation signal into the battery at work and the normal output current is drawn by a load. Through analyzing the average state space equations and deriving the small signal model of the converter, the gain function is deduced of the fluctuated current signal against the fluctuated duty cycle which controls the converter. The control algorithm is designed and the system model is verified using Matlab/Simulink with respect to the disturbance current signal generation, the gain function and its variation with frequency range.
Technical Paper

Optimal Speed Profile for Minimum Vibration during Engine Start Using Pontryagin’s Minimum Principle Approach

2019-11-04
2019-01-5026
An imperceptible engine start is critical to the acceptance of hybrid vehicles. This paper focusses on an optimal control problem that tries to reduce vibration during engine start. Efforts are made to obtain the optimal speed trajectory that could cause minimum vibration during engine start. In the first section, the target diesel powertrain is introduced. A four cylinder diesel engine is coaxially paralleled with an ISG motor. The ISG motor serves as the engine starter and engine flywheel. Its dynamic model is established using crank-link dynamics. Secondly, an index is brought out to evaluate the severity of vibration. The cylinder pressure variation is the main cause of engine torque ripple, which in turn results in engine speed fluctuation. The square of the angular acceleration is chosen as the index of vibration. The index shows a positive relation of cylinder pressure in terms of amplitude.
Technical Paper

Potential Fuel Consumption Improvement Analysis for Integrated Starter Generator System Base on the New European Drive-cycle

2008-06-23
2008-01-1570
A conventional vehicle with gasoline engine was tested on a chassis dynamometer over the new European drive-cycle (NEDC). The distributions of the engine speed and power, the throttle positions during the drive cycle are analyzed. Engine idling, acceleration and deceleration take an important proportion in the drive cycle. If engine idling is instead by engine stop, the fuel consumption will be improved by 2.27%. In an Integrated Starter Generator (ISG) system, with the assist of the starter/generator, transient operation of the engine will decrease, which reduces fuel consumption by 6%. Fuel economy will be also improved by braking regeneration and restricting operating points to an optimized region, the details are not discussed in this paper. To reduce fuel consumption further, the region where engine usually runs in urban traffic, should be paid more attention to while engine calibration.
Technical Paper

Predicting the Battery Residual Usable Energy under Dynamic Conditions: a Novel Adaptive Method with Enhanced Performance

2015-03-10
2015-01-0054
Electric vehicle (EV) is a worldwide researching focus due to its environmental friendliness, but the inaccurate Remaining Driving Range (RDR) estimation hinders the EVs' popularity, and an accurate determination of the battery Residual Usable Energy (RUE) is the key factor to obtain a precise RDR value. A common RUE estimation method is based on State-of-Charge (SOC) estimation, in which the RUE is proportionally related to the current SOC. However, the battery voltage varies significantly under real-world conditions, and the traditional method results in certain estimation errors. An adaptive RUE prediction method (AEP) is introduced in this paper, in which the dynamic voltage is predicted based on the future discharge profile and a battery model, while the RUE is then calculated by the predicted voltage and current sequences.
Technical Paper

Research on Driving Range Estimation for Electric Vehicles Based on Corrected Battery Model

2015-04-14
2015-01-0250
In order to reduce driver's anxiety about range and energy, a direct and effective approach is to offer the remaining driving range based on the vehicle's states. Consequently, the estimation accuracy of the battery's remaining energy is very important. This paper introduces a experiment-based model for predicting the remaining energy, which considers many factors, such as current, temperature, difference between battery cells, and so on. This approach ensures the accuracy of the remaining driving range. Finally the method is validated through the environment space test. Validation results show that this method can offer exact remaining energy, which reduces the estimation error of the remaining range greatly.
Technical Paper

Simulation Research on Engine Speed Fluctuation Suppression Based on Engine Torque Observer by Using a Flywheel ISG

2019-04-02
2019-01-0787
This paper conducts simulation research on engine torque ripple suppression based on the engine torque observer by using a flywheel-ISG (integrated starter generator). Usually, engine torque can be suppressed by using a passive method such as by installing a flywheel or torsional damper. However, failure problems arise in hybrid system because of different mechanical characters of the engine and its co-axial ISG motor. On the prototype test bench, the flywheel of the engine has been removed and replaced by an ISG rotor, namely FISG (flywheel ISG). Besides, the crank and FISG rotor are directly connected, which means no dampers or clutches are installed. If the engine torque ripples can be suppressed by the same level as the flywheel and damper by FISG active torque compensation, the new system can be more compact and economical. Simulation efforts are made to verify its feasibility. Firstly, based on the experimental test bench, which is currently under construction.
X