Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Experimental Study on the Effects of Split Injection in Stoichiometric Dual-Fuel Compression Ignition (SDCI) Combustion

2015-04-14
2015-01-0847
Stoichiometric dual-fuel compression ignition (SDCI) combustion has superior potential in both emission control and thermal efficiency. Split injection of diesel reportedly shows superiority in optimizing combustion phase control and increasing flexibility in fuel selection. This study focuses on split injection strategies in SDCI mode. The effects of main injection timing and pilot-to-total ratio are examined. Combustion phasing is found to be retarded in split injection when overmixing occurs as a result of early main injection timing. Furthermore, an optimised split injection timing can avoid extremely high pressure rise rate without great loss in indicated thermal efficiency while maintaining soot emission at an acceptable level. A higher pilot-to-total ratio always results in lower soot emission, higher combustion efficiency, and relatively superior ITE, but improvements are not significant with increased pilot-to-total ratio up to approximately 0.65.
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Technical Paper

New CEC Gasoline Direct Injection Fuels Test – Comparison of Deposits and Spray Performance from New and Used injectors.

2019-11-21
2019-28-2392
The use of deposit control additives in European market gasoline is well documented for maintaining high levels of engine cleanliness and subsequent sustained fuel and emissions performance. Co-ordinating European Council (CEC) industry fuels tests have played a crucial role in helping to drive market relevant, effective and low-cost deposit control additives into European market fuels. Until now, there has not been a Gasoline Direct Injection engine test available to fuel marketers in any market globally. However, a new CEC engine test is currently being developed to address that gap. Based on an in-house VW injector coking test, it shows promise for becoming a useful tool with which to develop and measure the performance of deposit control additives. A key requirement of industry tests should be to replicate issues seen in consumer vehicles, thereby providing a platform for relevant solutions.
X