Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental Investigation of Aeroacoustic Cabin Noise in Unsteady Flow by Means of a New Turbulence Generating Device

2017-03-28
2017-01-1545
With advancement of aeroacoustic wind tunnels and CAE technology, aeroacoustic cabin noise in steady flow has been improved. On the other hand, passenger comfort is also impacted by aeroacoustic noise in unsteady flow. There have been comparatively few studies into this area, and the mechanism remains unclear. Considering the future proliferation of autonomous driving, drivers will pay more attention to cabin noise than previously, and aeroacoustic noise is expected to become more prominent. Thus, the reduction of fluctuating aeroacoustic noise is important. Most of the previous research relied on road tests, which don’t provide reproducible conditions due to changing atmospheric and traffic conditions. To solve these problems, research using devices that generate turbulence are being conducted. However, the fluctuations of flow generated in previous studies were small, failing to simulate on-road conditions sufficiently.
Journal Article

Prediction formula of Aerodynamic Drag Reduction in Multiple-Vehicle Platooning Based on Wake Analysis and On-Road Experiments

2016-04-05
2016-01-1596
An experimental study on reducing aerodynamic drag and improving fuel economy through vehicle platooning was conducted to develop an Intelligent Transport System (ITS) with good fuel economy of the entire vehicle-based transportation society. The objectives of the present study are to achieve a simple and quick approach to estimating the aerodynamic drag reduction rates of vehicle platooning. This paper reports the prediction formula, including the conditions of various types of vehicles in multiple-vehicle platooning, based on the power law of a free turbulent axisymmetric wake and on-road experimental results. Note, the prediction formula in this study does not fully include the effect of various type of wake deficit patterns due to rear shape of vehicle and atmospheric wind. Therefore, continuous study is needed to examine the applicable limit.
Journal Article

Unsteady Aerodynamic Response of a Vehicle by Natural Wind Generator of a Full-Scale Wind Tunnel

2017-03-28
2017-01-1549
In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
X