Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Bench Test Procedure for Evaluating the Cylinder Liner Pitting Protection Performance of Engine Coolant Additives for Heavy Duty Diesel Engine Applications

1996-02-01
960879
Evaluations of the liner pitting protection performance provided by engine coolant corrosion inhibitors and supplemental coolant additives have presented many problems. Current practice involves the use of full scale engine tests to show that engine coolant inhibitors provide sufficient liner pitting protection. These are too time-consuming and expensive to use as the basis for industry-wide specifications. Ultrasonic vibratory test rigs have been used for screening purposes in individual labs, but these have suffered from poor reproducibility and insufficient additive differentiation. A new test procedure has been developed that reduces these problems. The new procedure compares candidate formulations against a good and bad reference fluid to reduce the concern for problems with calibration and equipment variability. Cast iron test coupons with well-defined microstructure and processing requirements significantly reduce test variability.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Technical Paper

A Combined Model for High Speed Valve Train Dynamics (Partly Linear and Partly Nonlinear)

1990-09-01
901726
A numerical modeling technique is proposed for computer simulations of high speed valve train dynamics. The dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental results prove the computer model developed here is accurate and also computationally efficient.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Journal Article

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

A Hybrid Heavy-Duty Diesel Power System for Off-Road Applications - Concept Definition

2021-04-06
2021-01-0449
A multi-year Power System R&D project was initiated with the objective of developing an off-road hybrid heavy-duty concept diesel engine with front end accessory drive-integrated energy storage. This off-road hybrid engine system is expected to deliver 15-20% reduction in fuel consumption over current Tier 4 Final-based diesel engines and consists of a downsized heavy-duty diesel engine containing advanced combustion technologies, capable of elevated peak cylinder pressures and thermal efficiencies, exhaust waste heat recovery via SuperTurbo™ turbocompounding, and hybrid energy recovery through both mechanical (high speed flywheel) and electrical systems. The first year of this project focused on the definition of the hybrid elements using extensive dynamic system simulation over transient work cycles, with hybrid supervisory controls development focusing on energy recovery and transient load assist, in Caterpillar’s DYNASTY™ software environment.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Method for Precise Placement of Hose Models

2013-04-08
2013-01-0603
A method is presented for precise mounting of a hose model with any specified twist. Once mounting points and directions are specified, a hose of a specified length can be developed using discrete beams. A divide and conquer approach is employed to position, orient, decouple the free end of the hose model in a twist free state that is then twisted to a specified angle. The development of the kinematic elements necessary to do this is presented. Some Cosserat models have been shown to branch into multiple solutions while the method presented here has always converged to the minimum energy solution. The method for linking the hose model to other linkages is discussed as well one common error committed by users in implementing the link. In order to model the torsional properties of the hose, the torsional stiffness must be modified. A method for doing this using digital scans is discussed.
Technical Paper

A Modeling Tool for Particulate Emissions in GDI Engines with Emphasis on the Injector Zone

2023-04-11
2023-01-0182
Fuel film deposits on combustion chamber walls are understood to be the main source of particle emissions in GDI engines under homogenous charge operation. More precisely, the liquid film that remains on the injector tip after the end of injection is a fuel rich zone that undergoes pyrolysis reactions leading to the formation of poly-aromatic hydrocarbons (PAH) known to be the precursors of soot. The physical phenomena accompanying the fuel film deposit, evaporation, and the chemical reactions associated to the injector film are not yet fully understood and require high fidelity CFD simulations and controlled experimental campaigns in optically accessible engines. To this end, a simplified model based on physical principles is developed in this work, which couples an analytical model for liquid film formation and evaporation on the injector tip with a stochastic particle dynamics model for particle formation.
Technical Paper

A New Validation of Spray Penetration Models for Modern Heavy Duty Diesel Fuel Injectors

2017-03-28
2017-01-0826
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
Technical Paper

A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations

2013-04-08
2013-01-1095
Traditional Lagrangian spray modeling approaches for internal combustion engines are highly grid-dependent due to insufficient resolution in the near nozzle region. This is primarily because of inherent restrictions of volume fraction with the Lagrangian assumption together with high computational costs associated with small grid sizes. A state-of-the-art grid-convergent spray modeling approach was recently developed and implemented by Senecal et al., (ASME-ICEF2012-92043) in the CONVERGE software. The key features of the methodology include Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, which enables use of cell sizes smaller than the nozzle diameter. This modeling approach was rigorously validated against non-evaporating, evaporating, and reacting data from the literature.
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

A Quasi-1D Model for the Description of ECN Spray a Combustion Process

2020-04-14
2020-01-0661
An existing one-dimensional (1D) spray model, which successfully captures inert spray processes, has been extended to enable prediction of ignition delay and lift-off length under reacting conditions. For that purpose, an additional transport equation for the progress variable has been incorporated, which includes detailed chemistry effects by means of a tabulation method based upon an external flamelet solver. The transport equation for the progress variable is solved in a quasi-1D fashion, along presumed mixture fraction trajectories, while the 1D approach is retained for the mixture fraction and axial velocity fields. The paper includes the model development, as well as the validation against Spray A measurements from the Engine Combustion Network. In spite of the simplified approach, the model captures some of the experimental trends of the lift-off length and ignition delay with a quite low computational cost.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
X