Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Exploration and Improvement of Road Vehicle Aerodynamics using LES

The paper discusses an appropriate usage of large eddy simulation (LES) in external vehicle aerodynamics. Three different applications, wheelhouse flow, gusty flow and active flow control, are used to demonstrate how LES can be used to obtain new knowledge about vehicle flows. The three examples illustrate the information that can be extracted using LES in vehicle aerodynamics and show the potential of LES in explorations of this complex flow.
Technical Paper

Interference between Engine Bay Flow and External Aerodynamics of Road Vehicles

This study focus on the aerodynamic influence of the engine bay packaging, with special emphasis on the density of packaging and its effect on cooling and exterior flow. For the study, numerical and experimental methods where combined to exploit the advantages of each method. The geometry used for the study was a model of Volvo S60 sedan type passenger car, carrying a detailed representation of the cooling package, engine bay and underbody area. In the study it was found that there is an influence on the exterior aerodynamics of the vehicle with respect to the packaging of the engine bay. Furthermore, it is shown that by evacuating a large amount of the cooling air through the wheel houses a reduction in drag can be achieved.
Journal Article

Parameter Estimation of a DOC from Engine Rig Experiments with a Discretized Catalyst Washcoat Model

Parameter tuning was performed against data from a full scale engine rig with a Diesel Oxidation Catalysts (DOC). Several different catalyst configurations were used with varying Pt loading, washcoat thickness and volume. To illustrate the interplay between kinetics and mass transport, engine operating points were chosen with a wide variation in variables (inlet conditions) and both transient and stationary operation was used. A catalyst model was developed where the catalyst washcoat was discretized as tanks in series both radially and axially. Three different model configurations were used for parameter tuning, evaluating three different approaches to modeling of internal transport resistance. It was concluded that for a catalyst model with internal transport resistance the best fit could be achieved if some parameters affecting the internal mass transport were tuned in addition to the kinetic parameters.