Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study on Knock Occurrence for Different Fuel Octane Number

2018-09-10
2018-01-1674
Combustion with knock is an abnormal phenomenon which constrains the engine performance, thermal efficiency and longevity. The advance timing of the ignition system requires it to be updated with respect to fuel octane number variation. The production series engines are calibrated by the manufacturer to run with a special fuel octane number. In the experiment, the engine was operated at different speeds, loads, spark advance timings and consumed commercial gasoline with research octane numbers (RON) 95, 97 and 100. A 1-dimensional validated engine combustion model was run in the GT-Power software to simulate the engine conditions required to define the knock envelope at the same engine operation conditions as experiment. The knock intensity investigation due to spark advance sweep shows that combustion with noise was started after a specific advance ignition timing and the audible knock occur by increasing the advance timing.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

A Numerical and Experimental Study of Diesel Fuel Sprays Impinging on a Temperature Controlled Wall

2006-10-16
2006-01-3333
Both spray-wall and spray-spray interactions in direct injection diesel engines have been found to influence the rate of heat release and the formation of emissions. Simulations of these phenomena for diesel sprays need to be validated, and an issue is investigating what kind of fuels can be used in both experiments and spray calculations. The objective of this work is to compare numerical simulations with experimental data of sprays impinging on a temperature controlled wall with respect to spray characteristics and heat transfer. The numerical simulations were made using the STAR-CD and KIVA-3V codes. The CFD simulations accounted for the actual spray chamber geometry and operating conditions used in the experiments. Particular attention was paid to the fuel used for the simulations.
Technical Paper

A Process Membership Service for Active Safety Systems

2007-04-16
2007-01-1613
This paper describes a process membership protocol for distributed real-time systems that use both time-triggered and event-triggered message passing for communication between its processing nodes (ECUs). TTCAN and FlexRay are examples of communication networks that support such systems. The membership protocol supports redundancy management in architectures where distributed applications such as braking, stability control, and collision mitigation share a common set of processing nodes. We assume that each such application consists of several processes executing on different nodes and that each node executes processes belonging to different applications. The protocol allows a group of co-operating processes to establish a consistent view of each other's operational status, i.e. whether they function correctly or not.
Technical Paper

A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation using Laser-Induced Exciplex Fluorescence

2003-05-19
2003-01-1836
Projected stringent emissions legislation will make tough demands on engine development. For diesel engines, in which combustion and emissions formation are governed by the spray formation and mixing processes, fuel injection plays a major role in the future development of cleaner engines. It is therefore important to study the fundamental features of the fuel injection process. In an engine the fuel is injected at high pressure into a pressurized and hot environment of air, which causes droplet formation and fuel evaporation. The injected fuel then forms a gaseous phase surrounding the liquid phase. The amount of evaporated fuel in relation to the total amount of injected fuel is of importance for engine performance, i.e. ignition delay and mixing rate. In this paper, the fraction of evaporated fuel was determined for sprays, using different orifice diameters ranging from 0.100 mm up to 0.227 mm, with the aid of a high-pressure spray chamber.
Technical Paper

ANNIE, a Tool for Integrating Ergonomics in the Design of Car Interiors

1999-09-28
1999-01-3372
In the ANNIE project - Applications of Neural Networks to Integrated Ergonomics - BE96-3433, a tool for integrating ergonomics into the design process is developed. This paper presents some features in the current ANNIE as applied to the design of car interiors. A variant of the ERGOMan mannequin with vision is controlled by a hybrid system for neuro-fuzzy simulation. It is trained by using an Elite system for registration of movements. An example of a trajectory generated by the system is shown. A fuzzy model is used for comfort evaluation. An experiment was performed to test its feasibility and it showed very promising results.
Technical Paper

Achieving a Cost Efficient and Dependability Scalable System for Automotive Applications, Using the QRcontrol Communication Protocol

2001-10-01
2001-01-3237
This paper presents methods to easily increase the dependability and fault tolerance of a scalable bit-oriented cyclic protocol, QRcontrol, utilizing TDMA technique. Minor changes to the protocol software and built-in techniques in the controller can give increased dependability for changing requirements on the system. These techniques include for example enabling of double buses, checksums for a node or a whole TDMA cycle, bus guardians and different fault detection mechanisms for some or all nodes in the cluster. The concept can be assigned to a very broad range of applications, from body electronics in cars to “By-Wire” applications with the highest dependability requirements.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

2009-04-20
2009-01-0842
Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Technical Paper

Analysis of Transient Compressible Gas Jets Using High Speed Schlieren Imaging

2013-04-08
2013-01-0871
Transient compressible gas jets, as encountered in direct injection gas fuel engines, have been examined using Schlieren visualization. Helium has been injected into air in a pressure chamber to create the jets examined. The structure of the jets is studied from the mean and coefficient of variation of the penetration length, jet width and jet angle. The quantities are calculated by digital image processing of Schlieren images captured with a high-speed camera. Injection pressure and chamber pressure have been varied to determine whether they have an effect on the response variables. Design of experiments methods have been used to develop the scheme employed in performing the experiments. The mean normalized penetration length of the jets is found to scale with injection to chamber pressure ratio and is in agreement with a momentum conserving relation given in the literature. The dispersion of the penetration length has been found to be in agreement with a normal distribution.
Technical Paper

Analysis of a Turbocharged Single-Cylinder Two-Stroke SI Engine Concept

2021-04-06
2021-01-0642
Power dense internal combustion engines (ICEs) are interesting candidates for onboard charging devices in different electric powertrain applications where the weight, volume and price of the energy storage components are critical. Single-cylinder naturally aspirated two-stroke spark-ignited (SI) engines are very small and power dense compared to four-stroke SI engines and the installation volume from a single cylinder two-stroke engine can become very interesting in some concepts. During charged conditions, four-stroke engines become more powerful than naturally aspirated two-stroke engines. The performance level of a two-stroke SI engines with a charging system is less well understood since only a limited number of articles have so far been published. However, if charging can be successfully applied to a two-stroke engine, it can become very power dense.
Journal Article

Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane Ratings

2020-04-14
2020-01-0551
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables.
Journal Article

Apparent Soot Size and Concentration in Combusting Diesel Jets at High Gas Pressures and Temperatures Measured by Combining Quasi-Simultaneous LII, Elastic Light Scattering and Light Extinction

2020-04-14
2020-01-0787
A method for measuring apparent soot particle size and concentration in turbulent combusting diesel jets with elevated and inhomogeneous optical density is presented and discussed. The method is based on the combination of quasi-simultaneous Laser Induced Incandescence (LII), Elastic Scattering (ELS) and Light Extinction (LE) measurements exhibiting a high potential for spatially resolved measurements of carbonaceous particles in flames and residual gases at a given instant. The method evaluates the LII signal by calculating the laser fluence across the flame and compensating for signal trapping, allowing measurements where laser extinction between the flame borders reaches values up to 90%. The method was implemented by measuring particle size and concentration in the middle sagittal axis of optically dense, combusting diesel jets at a certain time after the start of combustion.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Journal Article

CFD-Based Optimization of a Diesel-fueled Free Piston Engine Prototype for Conventional and HCCI Combustion

2008-10-06
2008-01-2423
This paper presents results of a parametric CFD modeling study of a prototype Free Piston Engine (FPE), designed for application in a series hybrid electric vehicle. Since the piston motion is governed by Newton's second law, accounting for the forces acting on the piston/translator, i.e. friction forces, electrical forces, and in-cylinder gas forces, having a high-level control system is vital. The control system changes the electrical force applied during the stroke, thus obtaining the desired compression ratio. Identical control algorithms were implemented in a MATLAB/SIMULINK model to those applied in the prototype engine. The ignition delay and heat release data used in the MATLAB/SIMULINK model are predicted by the KIVA-3V CFD code which incorporates detailed chemical kinetics (305 reactions among 70 species).
Technical Paper

CI Methanol and Ethanol combustion using ignition improver

2019-12-19
2019-01-2232
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm).
Journal Article

Comparison of CNN and LSTM for Modeling Virtual Sensors in an Engine

2020-04-14
2020-01-0735
The automotive industry makes extensive use of virtual models to increase efficiency during the development stage. The complexity of such virtual models increases with the complexity of the process that they describe, and thus new methods for their development are constantly evaluated. Among many others, data-driven techniques and machine learning offer promising results, creating deep neural networks that map complex input-output relations. This work aims at comparing the performance of two different neural network architectures for the estimation of the engine state and emissions (flow fuel, NOx and soot). More specifically, Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM) will be evaluated in terms of performance, using different techniques to increase the model generalization. During the learning stage data from different engine cycles are fed to the neural networks.
Technical Paper

Comparison of Long-Chain Alcohol Blends, HVO and Diesel on Spray Characteristics, Ignition and Soot Formation

2019-01-15
2019-01-0018
Spray characteristics of fossil Diesel fuel, hydrotreated vegetable oil (HVO) and two oxygenated fuel blends were studied to elucidate the combustion process. The fuels were studied in an optically accessible high-pressure/high-temperature chamber under non-combusting (623 K, 4.69 MPa) and combusting (823 K, 6.04 MPa) conditions. The fuel blends contained the long-chain alcohol 2-ethylhexanol (EH), HVO and either 20 vol.% Diesel or 7 vol.% rapeseed methyl ester (RME) and were designed to have a Diesel-like cetane number (CN). Injection pressures were set to 120 MPa and 180 MPa and the gas density was held constant at 26 kg/m3. Under non-combusting conditions, shadow imaging revealed the penetration length of the liquid and vapor phase of the spray. Under combusting conditions, the lift-off length and soot volume fraction were measured by simultaneously recording time-resolved two-dimensional laser extinction, flame luminosity and OH* chemiluminescence images.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Conceptual Design of Distributed by-Wire Systems

2002-03-04
2002-01-0271
A design method for ultra-dependable control-by-wire systems is presented here. With a top-down approach, exploiting the system's intrinsic redundancy combined with a scalable software redundancy, it is possible to meet dependability requirements cost-effectively. The method starts with the system's functions, which are broken down to the basic elements; task, sensor or actuator. A task graph shows the basic elements interrelationships. Sensor and actuator nodes form a non-redundant hardware architecture. The functional task-graph gives input when allocating software on the node architecture. Tasks are allocated to achieve low inter-node communication and transient fault tolerance using scalable software redundancy. Hardware is added to meet the dependability requirements. Finally, the method describes fault handling and bus scheduling. The proposed method has been used in two cases; a fly-by-wire aircraft and a drive-by-wire car.
Technical Paper

Considerations on Engine Design and Fuelling Technique Effects on Qualitative Combustion in Alcohol Diesel Engines

1998-10-19
982530
This paper depicts the main topics of the experimental investigation on alcohol engine development field, aiming at the engineering targets for the emission levels. The first part of this study was focused on engine design optimization for running on ethanol mixed with poly-ethylene glycol (PEG) as ignition improver. It was shown that some design changes in compression ratio, turbine casing, injector nozzle configuration and exhaust pressure governor (EPG) activation, lead to a better engine thermodynamics and its thermochemistry. The second objective of this study was the investigation of engine performance and emission levels, when the ignition improver diethyl ether (DEE) would be generated on board via catalytically dehydration of ethanol, and used directly as soluble mixture or separately fumigated.
X