Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model

2000-06-19
2000-01-1891
Until recently, the application of the detailed chemistry approach as a predictive tool for engine modeling has been sort of a “taboo” for different reasons, mainly because of an exaggerated rigor to the chemistry/turbulence interaction modeling. In terms of this ideology, if the interaction cannot be simulated properly, the detailed chemistry approach makes no sense. The novelty of the proposed methodology is the coupling of a generalized partially stirred reactor, PaSR, model with the high efficiency numerics to treat detailed oxidation kinetics of hydrocarbon fuels. In terms of this approach, chemical processes are assumed to proceed in two successive steps: the reaction follows after the micro-mixing is completed on a sub-grid scale.
Technical Paper

48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km

2019-04-02
2019-01-0366
48V mild hybrid powertrains are promising technologies for cost-effective compliance with future CO2 emissions standards. Current 48V powertrains with integrated belt starter generators (P0) with downsized engines achieve CO2 emissions of 95 g/km in the NEDC. However, to reach 75 g/km, it may be necessary to combine new 48V powertrain architectures with alternative fuels. Therefore, this paper compares CO2 emissions from different 48V powertrain architectures (P0, P1, P2, P3) with different electric power levels under various driving cycles (NEDC, WLTC, and RTS95). A numerical model of a compact class passenger car with a 48V powertrain was created and experimental fuel consumption maps for engines running on different fuels (gasoline, Diesel, E85, CNG) were used to simulate its CO2 emissions. The simulation results were analysed to determine why specific powertrain combinations were more efficient under certain driving conditions.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering Both Engine Properties and Global Warming Potentials

2016-10-17
2016-01-2254
Heavy alcohols can be mixed with fossil diesel to produce blended fuels that can be used in diesel engines. Alcohols can be obtained from fossil resources, but can also be produced more sustainably from renewable raw materials. The use of such biofuels can help to reduce greenhouse gas (GHG) emissions from the transport sector. This study examines four alcohol/diesel blends each containing one heavy alcohol: n-butanol, iso-butanol, 2-ethyl hexanol and n-octanol. All of the blends where prepared to function as drop-in fuels in existing engines with factory settings. To compensate for the alcohols′ low cetane numbers (CN), a third component with high CN was added to each blend, namely hydrotreated vegetable oil (HVO). The composition of each mixture was selected to give an overall CN equal to that of fossil diesel fuel.
Technical Paper

A Control-Oriented Spatially Resolved Thermal Model of the Three-Way-Catalyst

2021-04-06
2021-01-0597
The three-way-catalyst (TWC) is an essential part of the exhaust aftertreatment system in spark-ignited powertrains, converting nearly all toxic emissions to harmless gasses. The TWC’s conversion efficiency is significantly temperature-dependent, and cold-starts can be the dominating source of emissions for vehicles with frequent start/stops (e.g. hybrid vehicles). In this paper we develop a thermal TWC model and calibrate it with experimental data. Due to the few number of state variables the model is well suited for fast offline simulation as well as subsequent on-line control, for instance using non-linear state-feedback or explicit MPC. Using the model could allow an on-line controller to more optimally adjust the engine ignition timing, the power in an electric catalyst pre-heater, and/or the power split ratio in a hybrid vehicle when the catalyst is not completely hot.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Technical Paper

A Model of Turbocharged Engines as Dynamic Drivetrain Members

1993-11-01
933050
An engine model for use in computer simulation of transient behavior in drivetrain and vehicle systems is presented. Two elements, important for deviation (e.g. turbo-lag) from steady state characteristics, are the inertia of the supercharging unit (turbo shaft) and the fuel injection control system. No extensive combustion calculations are carried out within the model. Instead it uses condensed results from existing combustion models and measurements. The model is semi-empirical. Some of the engine specific properties needed for simulation are (e.g. for a turbocharged diesel): engine data in steady state operation, mappings of compressor and turbine performance, inertia of the engine components condensed to the crankshaft, turbo shaft inertia, displacement, compression ratio and the essentials of the fuel injection control strategy. Input parameters to the computer program based on the model are accelerator pedal position and external torque acting on the flywheel.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

A Numerical and Experimental Study of Diesel Fuel Sprays Impinging on a Temperature Controlled Wall

2006-10-16
2006-01-3333
Both spray-wall and spray-spray interactions in direct injection diesel engines have been found to influence the rate of heat release and the formation of emissions. Simulations of these phenomena for diesel sprays need to be validated, and an issue is investigating what kind of fuels can be used in both experiments and spray calculations. The objective of this work is to compare numerical simulations with experimental data of sprays impinging on a temperature controlled wall with respect to spray characteristics and heat transfer. The numerical simulations were made using the STAR-CD and KIVA-3V codes. The CFD simulations accounted for the actual spray chamber geometry and operating conditions used in the experiments. Particular attention was paid to the fuel used for the simulations.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

A Structure and Calibration Method for Data-Driven Modeling of NOX and Soot Emissions from a Diesel Engine

2012-04-16
2012-01-0355
The development and implementation of a new structure for data-driven models for NOX and soot emissions is described. The model structure is a linear regression model, where physically relevant input signals are used as regressors, and all the regression parameters are defined as grid-maps in the engine speed/injected fuel domain. The method of using grid-maps in the engine speed/injected fuel domain for all the regression parameters enables the models to be valid for changes in physical parameters that affect the emissions, without having to include these parameters as input signals to the models. This is possible for parameters that are dependent only on the engine speed and the amount of injected fuel. This means that models can handle changes for different parameters in the complete working range of the engine, without having to include all signals that actually effect the emissions into the models.
Technical Paper

A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation using Laser-Induced Exciplex Fluorescence

2003-05-19
2003-01-1836
Projected stringent emissions legislation will make tough demands on engine development. For diesel engines, in which combustion and emissions formation are governed by the spray formation and mixing processes, fuel injection plays a major role in the future development of cleaner engines. It is therefore important to study the fundamental features of the fuel injection process. In an engine the fuel is injected at high pressure into a pressurized and hot environment of air, which causes droplet formation and fuel evaporation. The injected fuel then forms a gaseous phase surrounding the liquid phase. The amount of evaporated fuel in relation to the total amount of injected fuel is of importance for engine performance, i.e. ignition delay and mixing rate. In this paper, the fraction of evaporated fuel was determined for sprays, using different orifice diameters ranging from 0.100 mm up to 0.227 mm, with the aid of a high-pressure spray chamber.
Technical Paper

A Study on Head Injury Risk in Car-to-Pedestrian Collisions Using FE-Model

2009-06-09
2009-01-2263
Head injury is quite frequently occurred in car-to-pedestrian collisions, which often places an enormous burden to victims and society. To address head protection and understand the head injury mechanisms, in-depth accident investigation and accident reconstructions were conducted. A total of 6 passenger-cars to adult-pedestrian accidents were sampled from the in-depth accident investigation in Changsha China. Accidents were firstly reconstructed by using Multi-bodies (MBS) pedestrian and car models. The head impact conditions such as head impact velocity; position and orientation were calculated from MBS reconstructions, which were then employed to set the initial conditions in the simulation of a head model striking a windshield using Finite Element (FE) head and windshield models. The intracranial pressure and stress distribution of the FE head model were calculated and correlated with the injury outcomes.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

2007-01-23
2007-01-0030
Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

2009-04-20
2009-01-0842
Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Technical Paper

Analysis of Advanced Multiple Injection Strategies in a Heavy-Duty Diesel Engine Using Optical Measurements and CFD-Simulations

2008-04-14
2008-01-1328
In order to meet future emissions legislation for Diesel engines and reduce their CO2 emissions it is necessary to improve diesel combustion by reducing the emissions it generates, while maintaining high efficiency and low fuel consumption. Advanced injection strategies offer possible ways to improve the trade-offs between NOx, PM and fuel consumption. In particular, use of high EGR levels (⥸ 40%) together with multiple injection strategies provides possibilities to reduce both engine-out NOx and soot emissions. Comparisons of optical engine measurements with CFD simulations enable detailed analysis of such combustion concepts. Thus, CFD simulations are important aids to understanding combustion phenomena, but the models used need to be able to model cases with advanced injection strategies.
Technical Paper

Analysis of Combustion Regimes in Compression Ignited Engines Using Parametric φ-T Dynamic Maps

2007-07-23
2007-01-1838
The main purpose of this study is to apply the parametric φ-T (Equivalence Ratio-Temperature) map analysis coupled with 3D engine simulations to characterize different combustion modes in DI, Direct Injection, compression ignited engines in terms of combustion efficiency and emission formations. The conventional static map analysis has been extended by constructing the parametric maps of a dynamic nature for different species characterizing the combustion and emission formation processes. The results of the analysis prove the efficiency of different combustion modes when injection parameters were varied from early to retarded injections.
X