Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Biodiesel Impact on Wear Protection of Engine Oils

2007-10-29
2007-01-4141
Pure biodiesel fuel (B100) is typically made of fatty acid methyl esters (FAME). FAME has different physical properties as compared to mineral diesel such as higher surface tension, lower volatility and higher specific gravity. These differences lead to a larger droplet size and thus more wall impingement of the fuel during injection in the combustion chamber. This results in higher levels of fuel dilution as the oil is scraped down into the crankcase by the scraper ring. The lower volatility also makes biodiesel more difficult to evaporate once it enters the crankcase. For these reasons, levels of fuel dilution in biodiesel fueled engines are likely to be higher compared to mineral diesel fueled engines. When in-cylinder dosing is applied to raise the exhaust temperature required for the regeneration of Diesel Particulate Filters (DPF's), biodiesel dilution in the engine oil may be elevated to high levels.
Technical Paper

Development and Testing of Optimized Engine Oils for Modern Two-Stroke Cycle Direct Fuel Injected Outboard Engines

2006-11-13
2006-32-0018
Despite the recent increase in fuel prices, the multi-billion dollar recreational boating market in North America continues to experience solid momentum and growth. In the U.S. economy alone, sales of recreational boats continue to increase with over 17 million boats sold in 2004 [1]. Of that share, outboard boats and the engines that power them, accounted for nearly half of all boat sales. Though there has been a shift in outboard technology to four-stroke cycle engines, a significant number of new engine sales represent two-stroke cycle engines employing direct fuel injection as a means to meet emissions regulations. With the life span of modern outboards estimated to be 8 to 10 years, a significant base of two-stroke cycle engines exist in the market place, and will continue to do so for the foreseeable future.
Technical Paper

Development of Chrysler Oxidation and Deposit Engine Oil Certification Test

2015-09-01
2015-01-2045
With the impending development of GF-6, the newest generation of engine oil, a new standardized oil oxidation and piston deposit test was developed using Chrysler 3.6 L Pentastar engine. The performance requirements and approval for passenger car light duty gasoline engine oil categories are set by the International Lubricants Standardization and Approval committee (ILSAC) and the American Petroleum Institute (API) using standardized testing protocols developed under the guidance of ASTM, the American Society for Testing and Materials. This paper describes the development of a new ASTM Chrysler oxidation and deposit test that will be used to evaluate lubricants performance for oil thickening and viscosity increase, and piston deposits.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
Technical Paper

Diesel Engines Using Low Sulfur Fuel Showing Excellent Performance and Durability with Reduced TBN Lubricants

2006-10-16
2006-01-3437
More stringent emission legislation has been a driver for changes in the design of Heavy Duty Diesel engines since the 1980s. Significant gains have been made over the years but, in 2007 and again in 2010, diesel engines in North America will have to meet even more stringent requirements for particulate matter and nitrogen oxide emissions. A reduction of the sulfur level in diesel fuel to a maximum of 15 mg/kg has been mandated as an enabler for new diesel engine exhaust gas after-treatment systems. Many studies have been published on the impact of the use of low sulfur diesel fuel. The focus of most of these studies has been on the possible impact on exhaust gas after-treatment system durability, but little has been documented on lubricant degradation and on the long term impact on engine durability. The objectives of the field test discussed in this paper were to evaluate the impact of low sulfur fuel and of a reduction in the TBN of the lubricant on lubricant degradation.
Technical Paper

Effect of Low Viscosity Passenger Car Motor Oils on Fuel Economy Engine Tests

2013-10-14
2013-01-2606
The fuel economy performance of passenger car vehicles has been an area of keen focus due to recent environmental regulations. Various efforts such as the development of new engine technologies have been undertaken to improve the fuel economy performance of these vehicles. Engine oils have also been targeted to contribute to better fuel efficiency. This has been done by introducing new lubricant additive technologies and low viscosity grade oils. In the latter case, passenger car motor oils are about to enter into a new generation in which the lower viscosity grade SAE 16 has been approved and discussion has started on the specification of viscosity grades lower than SAE 16, although SAE 0W-20 viscosity grade is the lowest in the SAE J300 specification during last decade. Nevertheless, additive technology is also important, as we previously reported that simple reduction of viscosity grade is not a solution to improve fuel economy performance in the Sequence VID test.
Technical Paper

Electrical Contact Resistance Bench Wear Testing: Comparison With Engine Test Results

2002-10-21
2002-01-2674
Because of the rising costs of engine tests, bench testing is a necessity in engine oil development. Which bench test to use remains a problem. Recently, we have reported on the use of electrical contact resistance (ECR) coupled with a ball-on-disk tribometer to study the formation and the durability of antiwear films from binary additive mixtures. This paper extends the ECR study to fully formulated fresh oils run in both fired gasoline engines and the ECR bench test. X-ray Photoelectron Spectroscopy (XPS) analyses of used Sequence VE engine parts from highash fully formulated lubricants are shown and the relationship of ECR film formation to fired-engine test performance is discussed.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
Journal Article

Extending the Boundaries of Diesel Particulate Filter Maintenance With Ultra-Low Ash - Zero-Phosphorus Oil

2012-09-10
2012-01-1709
By 2014, all new on- and off-highway diesel engines in North America, Europe and Japan will employ diesel particulate filters (DPF) in the exhaust in order to meet particulate emission standards. If the pressure across the DPF increases due to incombustibles remaining after filter regeneration, the exhaust backpressure will increase, and this in turn reduces fuel economy and engine power, and increases emissions. Due to engine oil consumption, over 90% of the incombustibles in the DPF are derived from inorganic lubricant additives. These components are derived from calcium and magnesium detergents, zinc dithiophosphates (ZnDTP) and metal-containing oxidation inhibitors. They do not regenerate as they are non-volatile metals and salts. Consequently, the DPF has to be removed from the vehicle for cleaning. Ashless oil could eliminate the need for cleaning.
Journal Article

Frictional Properties of Molybdenum-Based Lubricating Oil Additives Using Green Chemistry

2011-08-30
2011-01-2131
In this study, a green process was developed to synthesize a novel molybdenum disulfide (MoS₂)-based friction modifier (FM) for improving fuel economy performance of lubricants. These new materials were synthesized using less hazardous elemental sulfur as opposed to other sulfur sources like hydrogen sulfide (H₂S) and carbon disulfide (CS₂). Using various bench and motoring friction torque tests, it was shown that friction reduction was benefited by utilizing low molecular weight organic backbone when designing molybdenum FMs. Also, it was shown that newly synthesized molybdenum-based FMs were comparable to other well-known MoS₂ precursors.
Journal Article

Minimizing Diesel Particulate Filter Incombustibles by Using Ultra Low Ash - Zero Phosphorus Oil

2014-10-13
2014-01-2798
Due to engine oil consumption, over 90% of the incombustibles in the diesel particulate filters (DPF) are derived from organometallic lubricant additives. These components are derived from calcium and magnesium detergents, zinc dithiophosphates (ZnDTP) and metal-containing oxidation inhibitors. They do not regenerate as they are non-volatile metals and salts. Consequently, the DPF has to be removed from the vehicle for cleaning. Ashless oil could eliminate the need for cleaning. This study initially focused on development of an ashless oil, but eventually concluded that this oil could not meet the valve-train wear requirements of the API CJ-4, SN/ACEA E9 oil categories. However, a zero-phosphorus oil with no ZnDTP and an extremely low sulfated ash of 0.4% demonstrated that it could meet critical engine tests in API CJ-4/ACEA/SN. The above oil, which has been optimized at 0.3% sulfated ash, has proven field performance in Cummins ISX with DPF using ultra low sulfur diesel (ULSD).
Journal Article

The Impact of Lubricant Viscosity and Additive Chemistry on Fuel Economy in Heavy Duty Diesel Engines

2011-08-30
2011-01-2124
The heightened interest level in Fuel Economy for Heavy Duty Diesel Engines the industry has seen over the last few years continues to be high, and is not likely to change. Lowering the fuel consumption of all internal combustion engines remains a priority for years to come, driven by economic, legislative, and environmental reasons. While it is generally assumed that lower viscosity grade lubricants offer fuel economy benefits, there is a lot of confusion about exactly what drives the fuel economy benefits. Fuel Economy claims in trade literature vary over a broad range and it is difficult for the end user to determine what to expect when a change in lubricant viscosity is adopted for a fleet of vehicles in a certain type of operation. This publication makes an attempt at clarifying a number of these uncertainties with the help of additional engine test data, and more extensive data analysis.
X