Refine Your Search

Topic

Author

Search Results

Technical Paper

0D Modeling of Real-Driving NOx Emissions for a Diesel Passenger Vehicle

2018-09-10
2018-01-1761
NOx emissions from diesel passenger vehicles affect the atmospheric environment. It is difficult to evaluate the NOx emissions influenced by environmental conditions such as humidity and temperature, traffic conditions, driving patterns, etc. In the authors’ previous study, real-driving experiments were performed on city and highway routes using a diesel passenger car with only an exhaust gas recirculation system. A statistical prediction model of NOx emissions was considered for simple estimations in the real world using instantaneous vehicle data measured by the portable emissions measurement system and global positioning system. The prediction model consisted of explanatory variables, such as velocity, acceleration, road gradient, and position of transmission gear. Using the explanatory variables, NOx emissions on the city and highway routes was well predicted using a diesel vehicle without NOx reduction devices.
Journal Article

A Study of Low Speed Preignition Mechanism in Highly Boosted SI Gasoline Engines

2015-09-01
2015-01-1865
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

A Trial of Improving Thermal Efficiency by Active Piston Control -Speed Control Effect of Combustion Chamber Volume Variation on Thermal Efficiency-

2004-09-27
2004-32-0080
In reciprocating internal combustion engines, the piston stops in a moment at top dead center (TDC), so there exists a necessary time to proceed combustion. However more slowing piston motion around TDC, does it have a possibility to produce the following effects? The slowed piston motion may expedite combustion proceed and increase cylinder pressure. This may lead to an increase of degree of constant volume. As a result, thermal efficiency may be improved. In order to verify this idea, two types of engines were tested. The first engine attained high cylinder pressure as expected. The P-V diagram formed an almost ideal Otto cycle. However, this did not contribute to the improvement in the thermal efficiency. Then the second engine with further slower piston motion by active piston control was tested in order to examine the above reason.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Analysis of the Behavior of Liquid in a Fuel Tank

1988-11-01
881782
The behavior of the liquid in the motorcycle fuel tank is an interesting theme from the viewpoint of the fuel meter construction, as effected by variance in the fuel pressure resulting from acceleration or deceleration, etc. It can be assumed that the behavior of the liquid in the fuel tank will be affected by the running pattern, the shape and capacity of the fuel tank, etc. Here is a report on an experiment recently made to observe how the liquid behaves in a partially fully enclosed tank. We simplified the tank shape and the involved conditions (to actually observe the behavior of the inside liquid by the suspension method.) Then we have analized the effectes according to different liquid containers, to different velocities, and to different liquid volumes as well as the time history variance in the internal pressure.
Technical Paper

Combustion Noise of Two-Stroke Gasoline Engines and its Reduction Techniques

1989-05-01
891125
In order to obtain more reduction of two-stroke motorcycle engine noise than usual, it becomes necessary to make improvements within the combustion process itself. This study was carried out for two objectives. One is the investigation of the relationship between combustion and noise, and the other one is the development of noise reduction techniques. As the result, it was discovered that there was a significant correlation between engine noise and (dP/dθ)max, called the maximum rate of cylinder pressure rise. Therefore, the reduction of the (dP/dθ) max was recognized to be effective for engine noise reduction. The optimized alteration of combustion chamber shape is the most effective noise reduction technique, because it is able to reduce (dP/dθ) max without any sacrifice of engine power. In fact, the level of noise reduction can be predicted by one of the parameters obtained from the combustion chamber shape.
Technical Paper

Development of Fracture Splitting Method for Case Hardened Connecting Rods

2004-09-27
2004-32-0064
The fracture splitting (FS) method for case hardened connecting rods has been developed to improve engine performance while decreasing production costs. The FS method is widely used for automotive connecting rods because it effectively improves their productivity. Normalized forging steels, microalloyed forging steels and powder metals have generally been used as the material in the FS method as they are easily split due to their brittleness. On the other hand, the materials to be used for high performance motorcycles are case hardened low carbon steels because they allow the connecting rods to be lightweight due to their high fatigue strengths. These materials, which have a hardened area of approx. 0.5mm in depth from the surface, have a ductile texture inside. This texture obstructs the crack propagation and makes the split force too high to split without deforming the bearing area.
Journal Article

Development of Fracture-Split Connecting Rods Made of Titanium Alloy for Use on Supersport Motorcycles

2015-11-17
2015-32-0830
A connecting rod made of titanium alloy is effective for lower fuel consumption and higher power output comparing to a steel one because the titanium connecting rod enables to reduce the weight of both of reciprocating and rotating parts in an entire engine substantially. But up to now, it has been adopted only to expensive and small-lot production models because a material cost is high, a processing is difficult and a wear on a sliding area should be prevented. In order to adopt the titanium connecting rods into a more types of motorcycles, appropriate materials, processing methods and surface treatment were considered. Hot forging process was applied not only to reduce a machining volume but also to enhance a material strength and stiffness. And the fracture-splitting (FS) method for the big-end of the titanium connecting rod was put into a practical use.
Technical Paper

Development of Lightweight Oil Catch Tank Produced by Laser Powder Bed Fusion

2023-10-24
2023-01-1807
Laser powder bed fusion is one of the metal additive manufacturing technologies, so-called 3D printing. It has attracted great attentions due to high geometrical flexibility and remarkable metallurgical characteristics. An oil catch tank has been widely used in automotive industries for filtering oil vapors or carbon sludge from blow-by gas as a conventional usage. A pneumatic valve system mainly adopted to high-performance engines is also a potential application of it because undesirable oil infiltrates into air springs during engine operation, resulting in an excess spring pressure. This work focused on developing a lightweight oil catch tank which can be applied to a pneumatic valve system by taking advantage of additive manufacturing techniques. Al-Mg-Sc alloy powder with high tensile strength as well as high ductility were used under the consideration of specific strength, printability and availability.
Technical Paper

Development of Magnetostriction-type Load Sensor for Measurement System Using Motorcycle Testing Robot

2002-03-04
2002-01-1073
A control system for auto driving of motorcycle using anthropomorphic robot has been developed to efficiently evaluate a motorcycle with high accuracy, the performance of which is becoming higher. For magnetostriction-type load sensor, which is absolutely necessary for this system, the strain gauge type load cell has been used conventionally. However, the detection sensitivity, strength, and responsibility have not been satisfied completely under engine vibration conditions. To solve this problem, a magnetostriction-type load sensor has been newly developed. As a result of the tests with actual machines, it is found that this magnetostriction-type load sensor satisfies the conditions necessary for the motorcycle drive control system and measurement system.
Technical Paper

Development of Pollution-Free Rapid Plating System

1985-11-11
852264
It is in the plating process that the worst bottleneck occurs in plant automation. We, however, have succeeded in making our plating process free from pollution and compact, allowing us to install this system within a production line and consequently establish a continuous production line resulting in a decrease in plating cost to about 1/2 of the previous cost. We have achieved an excellent chrome plating speed of 60µ/min, by placing an anode relatively close to the part to be plated and by sending the plating solution into the space between the two by means of a pump. This provides a plating speed 100 times faster than with conventional methods, while improving the quality of the plating coat considerably. The system is optimum for functional platings, and can be used for the plating of shock absorber rods, engine valves, engine cylinders, etc.
Technical Paper

Effect of Coolant Water and Intake Air Temperatures on Thermal Efficiency of Gasoline Engines

2017-11-05
2017-32-0116
An optimization of thermal management system in a gasoline engine is considered to improve thermal efficiency by minimizing the cost increase without largely changing the configuration of engine system. In this study, the influence of water temperature and intake air temperature on thermal efficiency were investigated using an inline four-cylinder 1.2L gasoline engine. In addition, one-dimensional engine simulations were conducted by using a software of GT-SUITE. Brake thermal efficiency for different engine speeds and loads could be quantitatively predicted with changing the cooling water temperature in the cylinder head. Then, in order to predict the improvement of the fuel consumption in actual use, vehicle mode running simulation and general-purpose engine transient mode simulation were carried out by GT-SUITE. As a result, it was found that by controlling the temperatures of the cooling water and intake gas, thermal efficiency can be improved by several percent.
Technical Paper

Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-Cast Cylinders made of Hypereutectic Al-Si Alloy

2023-10-24
2023-01-1806
In recent years, efforts to reduce CO2 emissions (carbon neutrality) have accelerated worldwide. In the aluminum manufacturing industry, CO2 emissions can be reduced by switching the raw materials of choice; from virgin ingots to recycled ingots. However, the possible characteristic change accompanying the usage of impurity-ridden recycled ingots severely limits its applications, which also limits its potential contribution to carbon neutrality. Determining how impurity elements present in recycled ingots can affect the function of manufactured components is a necessary first step towards expanding the usage of recycled ingots. In this study, we aimed to apply recycled ingots to the monolithic cylinder made of hypereutectic Al-Si alloy and investigated how impurity elements in recycled ingots affect properties (especially seizure characteristic). Die-cast cylinders using virgin and recycled ingots were manufactured and their properties were investigated.
Journal Article

Effects of Surface Compound Layer on Bending Fatigue Strength of Nitrided Chromium-Molybdenum Steel

2020-01-24
2019-32-0504
Carburized and quenched materials with high fatigue strength are often used for motorcycle engine parts. Nitrided materials exhibit less deformation during heat treatment than carburized and quenched materials, so if the same or higher fatigue strength can be achieved with nitrided materials as with carburized and quenched materials, the geometric precision of parts can be increased and we can reduce engine noise as well as power loss. When the fatigue strengths of a nitrided material with its compound layer surface put into γ’ phase through nitriding potential control (hereafter, G), and a nitrided material put into ε phase (hereafter, E) were measured, the results showed the fatigue strength of the G to be about 11% higher than that of carburized and quenched materials. It was inferred that the strength of the compound layer determines fatigue strength.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Effects on Fuel Economy and NOx Emission Using Stratified Charge and EGR System for a Single Cylinder Motorcycle Engine

2008-09-09
2008-32-0018
In this study, lean combustion concept was investigated to realize better Fuel Economy (FE) on a single cylinder motorcycle engine. A low-pressure direct injection (DI) system was applied to realize lean stratified combustion concept with good combustion stability. In addition, Exhaust Gas Recirculation (EGR) system applicable to small motorcycle engines was used to attain FE improvement and NOx reduction. EGR gas temperature and EGR return position were focused on and effects on FE and NOx were investigated. Computational Fluid Dynamics (CFD) was used to reveal EGR distribution and air motion in both the intake port and the cylinder. As a result, the influence of the stratified charge, EGR temperature and EGR return position on FE and NOx were explained quantitatively. These techniques were effective in reducing NOx and improving FE for a single cylinder motorcycle engine.
Technical Paper

Evaluation of a Concept for DI Gasoline Combustion Using Enhanced Gas Motion

1998-02-23
980152
A direct injection gasoline engine system which employs a unique combustion system with enhanced gas motion is evaluated. Enhanced gas motion is produced by employing both a moderately strong swirl flow and a cavity in the piston. Advantages of this system are that the injection timing or spark timing need not be controlled severely and that since the injection timing can be set at near the intake BDC, time for evaporation can be gained to reduce soot emissions. Problems to be improved are that the Nox emissions level is worse than other lean burn systems and full load operation is not evaluated. According to the numerical calculations, the problems may be solved by enhancing the in-cylinder gas motion with axial stratification of swirl intensity at intake BDC; strong swirl near the cylinder head and weak swirl near the piston surface.
X