Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Design and Optimization Method for Pedestrian Lower Extremity Injury Analysis with the aPLI Model

2020-04-14
2020-01-0929
As pedestrian protection tests and evaluations have been officially incorporated into new C-NCAP, more stringent requirements have been placed on pedestrian protection performance. In this study, in order to reduce the injury of the vehicle front end structure to the pedestrian's lower extremity during the collision, the advanced pedestrian legform impactor (aPLI) model was used in conjunction with the finite element vehicle model for collision simulation based on the new C-NCAP legform test evaluation regulation. This paper selected the key components which have significant influences on the pedestrian's leg protection performance based on the CAE vehicle model, including front bumper, front-cover plate, upper impact pillar, impact beam and lower support plate, to form a simplified model and conducted parametric modeling based on it.
Technical Paper

A Study of Driver's Driving Concentration Based on Computer Vision Technology

2020-04-14
2020-01-0572
Driving safety is an eternal theme of the transportation industry. In recent years, with the rapid growth of car ownership, traffic accidents have become more frequent, and the harm it brings to human society has become increasingly serious. In this context, car safety assisted driving technology has received widespread attention. As an effective means to reduce traffic accidents and reduce accident losses, it has become the research frontier in the field of traffic engineering and represents the trend of future vehicle development. However, there are still many technical problems that need to be solved. With the continuous development of computer vision technology, face detection technology has become more and more mature, and applications have become more and more extensive. This article will use the face detection technology to detect the driver's face, and then analyze the changes in driver's driving focus.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Research Report

Automated Vehicles, the Driving Brain, and Artificial Intelligence

2022-11-16
EPR2022027
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation.
Technical Paper

Commonality and Differences between Cruiser, Sport, and Touring Motorcycles: An Ergonomics Study

2007-04-16
2007-01-0438
This paper presents results of two surveys, namely, a photographic measurements survey and a rider survey, conducted to determine how the type and origin of a motorcycle related to motorcycle dimensions, rider characteristics, seating posture, and motorcycle controls and displays. In the photographic survey, 12 most popular motorcycles covering three types (cruiser, sport, and touring) and three origins (Europe, Asia and North America) were measured from photographs taken in a standardized procedure with and without a rider. The data showed that the Asian and North American cruisers were very similar in all dimensions. These include seat height, seat to handlebar location, seat to foot rest location, foot rest size, and handgrip stance. This resulted in similar rider posture. North American sport motorcycles were more like cruisers than the Asian and European sport motorcycles.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Interior Design Process for UM-D's Low Mass Vehicle

2004-03-08
2004-01-1709
This paper describes a unique interior design and multidisciplinary process implemented by the faculty and students to develop the interior for a Low Mass Vehicle (LMV). The 103 inch LMV was designed with the goal of about 30% reduction in weight than a typical class C segment vehicle and would require low investment in manufacturing. In the early stages of the program, the UM-Dearborn team developed detailed requirements of the vehicle interior based on the vehicle's exterior developed using a similar process. The requirements were given to a senior class of automotive design students from the College of Creative Studies in Detroit to create different interior design themes. Approximately twenty-five interior design themes were judged by a panel of automotive industry experts, and a winning design was selected.
Technical Paper

Prediction of Forming Limit Diagram with Damage Analysis

1996-02-01
960598
Based on the theory of damage mechanics, an orthotropic damage model for the prediction of forming limit diagram (FLD) is developed. The conventional method of FLD used to predict localized necking adopts two fundamentally different approaches. Under biaxial loading, the Hill's plasticity method is often chosen when α (= ε2/ε1) < 0. On the other hand, the M-K method is adopted for the prediction of localized necking when α > 0 or the biaxial stretching of sheet metal is pronounced. The M-K method however suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The orthotropic damage model developed for predicting the FLD is based on the anisotropic damage model recently proposed by Chow et al (1993). The model is extended to take into account, during the sheet forming process, orthotropic plasticity and damage. The orthotropic FLD model consists of the constitutive equations of elasticity and plasticity coupled with damage.
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
X