Refine Your Search

Topic

Search Results

Technical Paper

A Progress Report on Electromagnetic Activity of Motor Vehicle Manufacturer's Association

1973-02-01
730057
Starting in 1965 and continuing through 1972, the Radio Committee of the Motor Vehicles Manufacturers Association (MVMA) has been the coordinator of a number of electromagnetic research projects. These investigations have included extensive applications of the updated SAE Standard, Measurement of Electromagnetic Radiation From Motor Vehicles (20-1000 MHz)-SAE J551a. Furthermore, there were joint testing programs with the Electronic Industries Association which encompassed measuring degradation in the performance of Land Mobile Radio Service receivers resulting from varying levels of impulsive-type radiation from motor vehicles. In addition, efforts were expended in using statistical approaches for testing a number of hypotheses covering a conversion of impulsive vehicle noise data to the interference potential to Land Mobile receivers.
Technical Paper

Analytical Techniques for Designing Riding Quality Into Automotive Vehicles

1967-02-01
670021
This paper describes techniques that predict and analyze dynamic response of vehicles traversing random rough surfaces. Road irregularities are statistically classified by frequency and amplitude distribution. This classification determines the nature of random inputs to mathematical vehicle models and allows computer prediction of dynamic response of a simulated vehicle. Once inputs and models are defined, parametric analysis with output criteria specified statistically can be performed. This allows prediction of vehicle riding quality and evaluation of design concepts. Statistical analysis of accelerometer measurements on actual vehicles permits verification of the design process and meaningful comparison between vehicles.
Technical Paper

Application of Design and Development Techniques for Direct Injection Spark Ignition Engines

1999-03-01
1999-01-0506
Gasoline direct injection technology is receiving increased attention among automotive engineers due to its high potential to reach future emission and fuel economy goals. This paper reports some of the design and development techniques in use at Chrysler as applied to four-stroke Direct Injection Spark Ignition (DISI) engines. The spray characteristics of Chrysler's single-fluid high-pressure injector are reported. Tools used in the design process are identified. Observations of the in-cylinder fuel/air mixing process using laser diagnostic techniques and Computational Fluid Dynamics (CFD) are described. Finally, combustion and emissions characteristics using Design of Experiment (DoE) tests are presented.
Technical Paper

Architecture and Operation of the HIP7010 J1850 Byte-Level Interface Circuit

1995-02-01
950035
As a cost effective solution to making microcontroller based systems “J1850[1] aware”, a peripheral device (the HIP7010) was developed to extend the capabilities of standard microcontrollers. From the perspective of the Host, the peripheral device handles J1850 messages as a series of bytes (similar in concept to a universal asynchronous receiver/transmitter [UART]). The architecture of the HIP7010 is discussed. The design of the J1850 interface, state machine, status/control blocks, cyclical redundancy check (CRC) hardware, host interface, and fail-safe features are detailed. Illustrations are provided of: Host/HIP7010 interfacing; message transmission and reception; error handling; and In-Frame Response (IFR) generation.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

CAE Applications in the Automotive Industry-The Use of CAD for Vehicle Packaging and Master Drafts

1985-02-01
850446
Computer-aided engineering (CAE) is generally recognized as an important method of improving productivity. One of the major benefits of this technology has been to reduce the amount of manual labor spent analyzing changes made to vehicle designs. By using existing data, computer-aided design (CAD) can be used to co-ordinate the spatial relationships of the driver, passengers, engines, suspensions, tires, driver controls, and other body and chassis components. Special files containing a specific set of user-defined CAD language instructions, referred to as macros, are discussed and illustrated. Also included are tire clearance studies and master reference vehicle dimension files.
Technical Paper

Changes in Reliability During the Design and Development Process of a Vehicle's Electrical/Electronic Systems

1995-02-01
950826
The changes in reliability of the Electrical/Electronic Systems of a vehicle-line during its early design and development engineering processes have been studied. A computerized vehicle failure tracking system was used to provide results from several stages of early development vehicle testing at the proving grounds. The data were analyzed using a software program that assumes that failures in a repairable system, such as a car, occur as a nonhomogeneous Poisson process. Results suggest that, under normal circumstances, a significant and quantitative improvement in reliability is achievable as the system or component design progresses through the early design and development processes. This also provides a means of predicting future system(s) reliability when the system(s) is in production.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Chrysler Microprocessor Spark Advance Control

1978-02-01
780117
Electronics suitable for engine control applications has steadily evolved from analog control systems to microprocessor based designs. The change in technology required in switching from analog to microprocessors has required sensor development, new analog to digital conversion techniques, and development of custom input/output circuits suitable for automotive applications. By proper design of the microcomputer system, an engine control unit can be developed that is cost effective compared to conventional analog circuit techniques while providing additional flexibility. The primary limitation of a digital approach is the long lead time required to change the ROM pattern. This lead time can be reduced by combining PROM and ROM in the same system.
Technical Paper

Chrysler's Versatile 2.2 Liter Fuel Injection Controller

1984-09-01
841249
Using an evolutionary design process, Chrysler has developed a multi-purpose fuel injection controller which goes well beyond simply delivering fuel. Designed with efficiency in mind, this microprocessor based system brings sophisticated technology to the automobile in a reliable and serviceable form.
Technical Paper

Digital Recording of Vehicle Crash Data

1981-06-01
810810
This paper discusses the development and implementation of a 16 channel data acquisition system for high “G” impact testing which includes a self-contained, on-board data acquisition unit, a programmer-exerciser and debriefing subsystems. The microprocessor controlled, on-board unit contains all signal conditioning, A/D conversion hardware and logic to store 4K 12 bit samples of data per channel. This unit will debrief into an oscilloscope, a desk-top computer or a large disk-based minicomputer system. Advantages over previous systems include the elimination of costly hardware (such as umbilical cables and recorders), and a reduction in pre-test preparation and data processing time.
Technical Paper

Effective On-Board Diagnostics for Electronic Engine Controls

1985-03-01
850422
Properly implemented, On-Board Diagnostic (OBD) Systems fill the gap in sophistication between computer based fuel injection engine controls and a carburetor oriented service industry. By emphasizing simplicity and credibility, inexpensive OBD systems make electronic engine controls a desirable feature to the service technician.
Technical Paper

Engine Misfire Detection by Ionization Current Monitoring

1995-02-01
950003
Engine misfires cause a negative impact on exhaust emissions. Severe cases could damage the catalyst system permanently. These are the basic reasons why CARB (California Air Resources Board) mandated the detection of engine misfires in their OBD II (On-Board Diagnostics II) regulations. For the last several years, automobile manufacturers and their suppliers have been working diligently on various solutions for the “Misfire Detection” challenge. Many have implemented a solution called “Crankshaft Velocity Fluctuation” (CVF), which utilizes the crank sensor input to calculate the variation of the crankshaft rotational speed. The theory is that any misfires will contribute to a deceleration of the crankshaft velocity due to the absence of pressure torque. This approach is marginal at best due to the fact that there could be many contributors to a crankshaft velocity deceleration under various operating conditions. To sort out which is a true misfire is a very difficult task.
Technical Paper

Experimental and Computer Simulation Analysis of Transients on an Automobile Communication Bus

1995-02-01
950038
Voltage and current surges are a major concern when it comes to ensuring the functional integrity of electrical and electronic components and modules in an automobile system. This paper presents a computer simulation study for analyzing the effect of high voltage spikes and current load dump on a new Integrated Driver/Receiver (IDR) IC, currently being developed for a J1850 Data Communication Bus in an automobile. It describes the modeling and simulation of the protection structure proposed for the device. The simulation study yields a prediction of current and voltage capability of the protection circuit based on thermal breakdown and transient responses of the circuit. Two levels of modeling, namely, the behavioral level model and the component level model, are used to generate the simulation results. Experimental data will be acquired and used to validate the simulation model when the actual device becomes available.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
Technical Paper

Integrated Vehicle Electronics - An Overview of Its Potential

1986-10-20
861031
New methods are required for implementing the proliferation and sophistication of electronic controls and features to meet the customer's quality expectations. Vehicle electronic integration provides a potential solution for reconciling the seemingly contradictory objectives of high quality at reasonable cost. No module can be considered independently with this global approach. OEM subsystem and component suppliers' devices will need to play in concert with the overall vehicle's electrical/electronic strategy. Some new, separately packaged electronic features may eventually be assimilated within the framework of other electronic controllers.
Technical Paper

Methanol Concentration Smart Sensor

1993-03-01
930354
A Methanol Concentration Smart Sensor has been developed to support the demand for alternately fueled vehicles operating on blends of methanol and gasoline in any mixture up to 85% methanol. The sensor measures concentration by exploiting the difference in dielectric properties between methanol and gasoline. The measurement is made based on the distributed capacitance of a coil of wire, contained in a reservoir through which the fuel passes. This signal, along with temperature compensation inputs, is then fed to an integral microprocessor, which provides a voltage output proportional to the methanol concentration of the fuel. The Powertrain Controller uses this information to modify injector pulse width and provide proper spark advance. This paper will explain the sensor's development methodology and function.
Technical Paper

Network I/O and System Considerations

1995-02-01
950036
The J1850 bus requirements promote an unique and well characterized physical layer behavior developed through the learning curve of previous multiplex solutions. Design requirements such as: 1) Reliably interconnecting all of the vehicle's most complex modules, 2) Consistently withstanding the vehicle's harsh environment, and 3) Meeting SAE's functionality requirements, were all a formidable task to achieve. This paper will highlight the path taken to achieve a J1850 Bus interface which successfully met all of the design and functional goals. Chrysler's C2D insights will be discussed and related to goals for J1850. Other design considerations will also be discussed such as EMC issues, custom test equipment, and vehicle and component testability. In turn, silicon processes with special structures and topologies will be discussed relating the specific design with the needed electrical behavior. The HIP7020 J1850 BUS TRANSCEIVER I/O for MULTIPLEX WIRING accomplishes these requirements.
Technical Paper

OPNET J1850 Network Simulator

1995-02-01
950037
MIL 3's OPNET simulator was used to model Chrysler's J1850 bus. Modeled were both J1850 bus characteristics and those portions of control modules (e.g., the engine controller) which communicate on the bus. Current Chrysler control module algorithms and proposed Chrysler J1850 message formats were used to design the control module models. The control module models include all messages which are transmitted at fixed intervals over the J1850 bus. The effects of function-based messages (e.g., messages to be transmitted on a particular sensor or push-button reading) on system load were investigated by transmitting an additional message with a fixed, relatively high priority at 50 millisecond intervals.
Technical Paper

PRINCIPLES OF NOISE REDUCTION

1958-01-01
580052
THIS paper explains a few of the basic principles of the character of sound and the mechanism of human hearing. The author describes some simple experiments which demonstrate the relationship between intensity and loudness and the nature of harmony. He also points out the difficulties of accurately analyzing sound electronically, and the resulting importance of combining the finest electronic equipment with sharp, attentive human faculties. Five basic ways to reduce noise and the mechanics of each are described. The effect of these methods on the work of the sound engineer is indicated.
X