Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of Aluminum, Sheet Molding Compound and Steel for Hoods

1992-02-01
920242
A unique opportunity arose to make a direct comparison of aluminum, sheet molding compound (SMC) and steel using a common hood design. In considering all possible material combinations of inner and outer panels, it was discovered that some of the combinations were incompatible due to material properties. Only the compatible material combinations were considered. Three different joining techniques - welding, bonding and bonded hem flanging - were evaluated. The cost, weight and structural performance of the chosen hood material combinations were established. Areas of further development were identified, including design optimization for specific material combinations.
Technical Paper

A New Method of Predicting the Formability of Materials

1972-02-01
720019
The paper presents a new method, based on standard laboratory cup tests, for predicting the formability of materials; in the example provided, the forming potentials of four new materials are shown. The properties of stretchability and drawability, which are the principal factors defining a material's forming limits, may be assessed using the Olsen spherical cup test and the Swift flat-bottomed cup test. In the shape analysis procedure described, the minimum amount of deformation needed to fix a desired shape is determined. Then necessary adjustments to tooling for optimum sheet metal usage are made based on calculations from a new type of chart showing stretch forming ratio and draw forming ratio, providing a comparison of the formabilities of a number of materials.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Advancements in RRIM Fascia Application Provide Cost Competitiveness While Meeting Performance Requirements

1997-02-24
970482
The commercial validation of a optimized RRIM polyurethane substrate with a novel barrier coat for fascia applications is reviewed which creates cost competitiveness to thermoplastic olefins (TPO), without sacrificing performance. Meeting fascia performance requirements with thinner and lighter RRIM materials containing recyclate and the subsequent application of a barrier coat eliminating the traditional primecoat cycle was investigated.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Body Aerodynamics and Heater Air Flow

1966-02-01
660388
The heater air flow rate is a function not only of the heater itself but also of the size and location of the heater system air inlets, the car body air outlets, and the body surface pressure at these inlets and outlets. Favorable pressure conditions generally exist at the typical top cowl heater air inlet; however, the aerodynamics of each particular vehicle should be studied to confirm the existence of these conditions. Little consideration has been given to body air outlet pressure conditions since body leakage paths have generally served as adequate air outlets; but, as body leakage is reduced, specific air outlets must be considered and a knowledge of aerodynamics is essential to the achieving of appropriately sized and appropriately located air outlets.
Technical Paper

Brake and Clutch Pedal System Optimization Using Design for Manufacture and Assembly

1992-02-01
920774
This paper describes the application of the Design for Manufacture and Assembly (DFMA) method at Chrysler. Attention is focused on the development of the clutch and brake pedal and bracketry system of the PL project in the Small Car Platform. The Chrysler DFMA procedure including competitive evaluation and value engineering was utilized during the initial design phase involving product concept development from the original functional and manufacturing requirements. After the first laboratory tests, a number of key design and manufacturing concerns surfaced and led to a second cycle of DFMA analysis. The procedure permits major design functions and manufacturing and assembly process issues and criteria to be incorporated in the initial design stages.
Technical Paper

CHRYSLER TORSION-AIRE SUSPENSION Across The Board

1958-01-01
580031
IN 1951 Chrysler Corp. began working on a new torsion suspension. In this paper the authors describe details of the development and design of the suspension, now available on 1957 cars. The authors claim the Torsion-Aire suspension has the following advantages: reduced highspeed float, boulevard harshness, impact harshness, road noise, body roll, nose dive, and acceleration squat; better directional stability and cornering ability; fewer lubrication points; and a better balanced ride. The main feature of the front suspension is the use of torsion bars. One of the principal advantages of torsion bars is their weight: 10 lb as compared to 15.8 lb for a 1956 production coil spring.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
Technical Paper

Changes in Reliability During the Design and Development Process of a Vehicle's Electrical/Electronic Systems

1995-02-01
950826
The changes in reliability of the Electrical/Electronic Systems of a vehicle-line during its early design and development engineering processes have been studied. A computerized vehicle failure tracking system was used to provide results from several stages of early development vehicle testing at the proving grounds. The data were analyzed using a software program that assumes that failures in a repairable system, such as a car, occur as a nonhomogeneous Poisson process. Results suggest that, under normal circumstances, a significant and quantitative improvement in reliability is achievable as the system or component design progresses through the early design and development processes. This also provides a means of predicting future system(s) reliability when the system(s) is in production.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Chrysler Corporation's Isolated Transverse Torsion Bar Front Suspension

1977-02-01
770179
To satisfy the objectives of Chrysler's new generation of compact vehicles, a unique front suspension system was created. This system has achieved an outstanding level of ride comfort while providing significant advantages in the basic vehicle packaging. The key to the system is the transverse torsion bar and bushings which serve the dual function of suspension spring and fore and aft restraint for the lower control arm. Producing this torsion bar in mass production required advances in both engineering and manufacturing technology.
Technical Paper

Chrysler Energy Absorbing, Anti-Theft Steering Column

1970-02-01
700001
Chrysler Corp. has introduced two new features on their 1970 steering columns: an energy absorbing steering wheel which appears on the Barracuda and Challenger models; and an antitheft steering column which is standard on all car-lines. This paper describes the two engineering programs.
Technical Paper

Chrysler's New Engine Performance Dynamometer Facility

1981-02-01
810286
A new 10 cell engine dynamometer complex, (Fig. 1) which provides optimized testing and development capacity for new lines of automotive power plants for the 1980's and beyond, has been built at Chrysler's Engineering Center. This modern facility combines “state of-the art” instrumentation for control, data gathering, and data analysis with new operating concepts which together allow for high levels of accuracy, repeatability, and productivity previously not attainable in the area of engine testing and development.
Technical Paper

Chrysler's Versatile 2.2 Liter Fuel Injection Controller

1984-09-01
841249
Using an evolutionary design process, Chrysler has developed a multi-purpose fuel injection controller which goes well beyond simply delivering fuel. Designed with efficiency in mind, this microprocessor based system brings sophisticated technology to the automobile in a reliable and serviceable form.
Technical Paper

Design Criteria for the Dent Resistance of Auto Body Panels

1974-02-01
740081
One solution to the problem of spiraling automotive weights is the substitution of thinner high strength steels or thicker aluminum alloy outer body panels. In doing so the dent resistance of these panels must not be sacrificed. This study investigates the dent resistance of doubly curved rectangular panels in various steels and aluminum alloys. Dent depth on the order of magnitude of the panel thickness was studied. An empirical equation is developed that relates dent resistance to the yield strengths, metal thickness, and panel geometry.
Technical Paper

Design and Selection Factors for Automatic Transaxle Tapered Roller Bearings

1992-02-01
920609
Tapered roller bearings have proven successful in a number of high-volume automatic transaxle designs. Typically, tapered roller bearings are required to carry high loads generated by helical and hypoid gears. To meet the demands of a successful design, a number of factors must be considered in the selection and application of tapered roller bearings. This paper presents a discussion of these factors as well as results from Chrysler's transaxle testing. Selection of tapered roller bearings is based on the transmission duty cycle developed using load and speed histograms, gear data, size constraints, and life requirements. A bearing life analysis considering the total transaxle system is conducted using a sophisticated computer program. Various system effects are analyzed including the load/speed cycle, housing and shaft rigidity, lubrication, bearing setting, thermal effects, and bearing internal design.
Technical Paper

Determination of Coastdown Mechanical Loss Ambient Correction Factors for use with J2263 Road Tests

1997-02-24
970269
Testing for vehicle emissions and fuel economy certification occurs primarily on chassis dynamometers in a laboratory setting and therefore the actual road conditions, such as forces due to tire rolling resistance and internal friction, must be simulated. Test track coastdown procedures measure vehicle road load forces and produce an equation which relates these forces to velocity. The recent inclusion of onboard anemometry has allowed the coastdown procedure to account for varying wind effects; however, the new anemometer based mechanical loss coefficients do not take into account ambient weather conditions. The two purposes of this study are (1) to determine the new tire rolling resistance temperature correction coefficient that should be used when test ambient temperature is different from the standard reference value of 68°F, and (2) to investigate the effects of auxiliary measurements, such as other ambient conditions and vehicle settings, on this correction coefficient.
X