Refine Your Search

Topic

Search Results

Technical Paper

A Design for Six Sigma Approach to Optimize a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness

2011-04-12
2011-01-0720
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
Journal Article

A Study of Parking Brake Cable Efficiency as Affected by Construction Type

2011-09-18
2011-01-2380
This paper studies the effects of various types of parking brake cable construction on parking brake system efficiency. Testing was conducted on a variety of common cable constructions from several industry sources. Cable construction variables include different types of conduit and wire strand. Input travel, input force, output travel, and output force were carefully measured under controlled conditions. Force, travel and hence work efficiencies were calculated and analyzed to identify any differences that might exist under the defined test conditions. Conclusions were drawn that might provide direction for improving parking brake system designs that have performance issues caused by poor cable efficiency.
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

CAE Simulation of Door Sag/Set Using Subsystem Level Approach

2013-04-08
2013-01-1199
The performance of door assembly is very significant for the vehicle design and door sag/set is one of the important attribute for design of door assembly. This paper provides an overview of conventional approach for door sag/set study based on door-hinge-BIW assembly (system level approach) and its limitation over new approach based on subassembly (subsystem level approach). The door sag/set simulation at system level is the most common approach adopted across auto industry. This approach evaluates only structural adequacy of door assembly system for sag load. To find key contributor for door sagging is always been time consuming task with conventional approach thus there is a delay in providing design enablers to meet the design target. New approach of door sag/set at “subsystem level” evaluates the structural stiffness contribution of individual subsystem. It support for setting up the target at subsystem level, which integrate and regulate the system level performance.
Technical Paper

Calibrating an Adaptive Pivoting Vane Pump to Deliver a Stepped Pressure Profile

2013-04-08
2013-01-1729
This paper presents a process for the selection of spring rate and pre-load for an adaptively controlled pivoting vane oil pump. The pivoting vane pump has two modes: high and low speed. A spring within the pump is installed to induce a torque that causes an adaptive displacement mechanism within the pump to move toward maximum oil chamber size. In low speed mode, two feedback regions are pressurized that produce torques that counter the spring generated torque. Together, both regions being pressurized by main oil gallery pressure tend to reduce pump displacement more at lower speeds than if only a single chamber is pressurized. At higher speeds, a solenoid switch turns off pressure to one of the feedback pressure chambers, thereby reducing feedback torque that counters spring torque. This enables higher pressure calibrations in this speed mode. In this paper, we identify a process for choosing the spring rate and pre-load that calibrates the adaptive displacement mechanism.
Journal Article

Combined Variation Modeling of Structural and Tuning Components for Vehicle Performance Assessment

2013-04-08
2013-01-0944
During the vehicle development process, dimensional variation simulation modeling has been applied extensively to estimate the effects of build variation on the final product. Traditional variation simulation methods analyze the tolerance inputs of structural components, but do not account for any compliance effects due to stiffness variation in tuning components, such as bushings, springs, isolators, etc., since both product and process variation are simulated based on rigid-body assumptions. Vehicle performance objectives such as ride and handling (R&H) often involve these compliance metrics. The objective of this paper is to present a method to concurrently simulate the tolerance from the structural parts as well as the variability of compliance from the tuning components through an integration package. The combination of these two highly influential effects will allow for a more accurate prediction and assessment of vehicle performance.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
Technical Paper

Design and Control of Transmission Systems using Physical Model Simulation

2010-04-12
2010-01-0898
Physical modeling has been used by the industry to improve development time and produce a quality product. In this paper, we will describe two methods used in system control to take advantage of the physical model. One method describes a complete transmission physical model with a full system control utilizing co-simulation techniques. Data will be presented, and comparison to vehicle data will be conducted and verified. The second method will illustrate how to utilize the physical model to improve system design and modification. In this method, vehicle data will be used as inputs to the model, the model output will be verified against vehicle output data. The two methods are excellent tools for the Design For Six Sigma process (DFSS design).
Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

2014-04-01
2014-01-0729
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

Developing Generic Load Cases by Defining Maximum Spindle Loads as a Function of Corner Weight & Tire Sidewall Height

2013-04-08
2013-01-1435
Generic spindle loads are used in the upfront analysis for vehicle durability development. They represent different load case into the vehicle suspension system, such as potholes, cornering, and braking. The advantage of using these generic load cases is that they can be used upfront in the durability development process before hardware is available. The generic spindle loads are cascaded through the suspension system to generate component loads which can then be used for stress analysis. The paper describes a study that was done to determine the validity of current generic spindle loads by analyzing spindle data from multiple vehicles in the same class. The paper will explain the initial data analysis that was done, which was normalizing the spindle loads by weight. In addition, the paper will then go into further detail on describing a relationship between spindle loads and tire sidewall height, which reduced the load scatter.
Technical Paper

Die Wear Estimation in Automotive Sheet Metal Stamping

2013-04-08
2013-01-1171
Automotive industry's migration to usage of HSS (High Strength Steels), AHSS (Advance High Strength Steels) from conventional steels for their low weight and high strength properties has had its significant effects on die wear. The unpredictability of die wear can pose manufacturing issues, for example, undesirable tool life. Hence die wear has been gaining immense attention and lot of research work has been carried out to provide a die wear prediction method. This paper focuses on the method of estimating wear mathematically based on the mechanics behind die wear phenomenon. This is also an effort to study wear on die for an automotive component in critical areas for which the amount of wear are calculated. This study is further to be correlated with production data from die maintenance record, explicit measurement of die wear, etc., to validate the estimation.
Technical Paper

Digital Image Correlation System Application - Measuring Deformation and Load of Convertible Top Fabric

2010-04-12
2010-01-0954
Strain gages have been widely used for measuring strain or deformation. They are very reliable and accurate. However, for application on fabric material, strain gages have their limitations. In this paper, digital image correlation (DIC) is used to measure the deformation around the rear window on a convertible top. The test needed to be non destructive, the vehicle and convertible top could not be damaged. The deformation or strain measured on the fabric was used to estimate the force experienced at the interface between the glass and the fabric during an opening/closing application. A speckle pattern was created on the convertible fabric where deformation was to be measured with washable paint. The image of the measured area was first recorded. The convertible top was then latched down and the fabric was stretched. A second image was recorded again. Based on the two images, the deformation/strain between the two conditions was measured.
Journal Article

Estimation of One-Sided Lower Tolerance Limits for a Weibull Distribution Using the Monte Carlo Pivotal Simulation Technique

2013-04-08
2013-01-0329
This paper introduces a methodology to calculate confidence bounds for a normal and Weibull distribution using Monte Carlo pivotal statistics. As an example, a ready-to-use lookup table to calculate one-sided lower confidence bounds is established and demonstrated for normal and Weibull distributions. The concept of one-sided lower tolerance limits for a normal distribution was first introduced by G. J. Lieberman in 1958 (later modified by Link in 1985 and Wei in 2012), and has been widely used in the automotive industry because of the easy-to-use lookup tables. Monte Carlo simulation methods presented here are more accurate as they eliminate assumptions and approximations inherent in existing approaches by using random experiments. This developed methodology can be used to generate confidence bounds for any parametric distribution. The ready-to-use table for the one-sided lower tolerance limits for a Weibull distribution is presented.
Technical Paper

Fatigue Based Damage Analysis with Correlation to Customer Duty Cycle Using Design Reliability and Confidence

2010-04-12
2010-01-0200
This paper will define the process for correlating fatigue based customer duty cycle with laboratory bench test data. The process includes the development of the Median and Design Load-Life curve equations. The Median Load-Life curve is a best fit linear regression; whereas, the Design Load-Life curve incorporates component specific reliability and confidence targets. To account for the statistical distribution of fatigue life, due to sample size, the one-side lower-bound tolerance limit method ( Lieberman, 1958 ) will be utilized. This paper will include a correlation between the predicted design fatigue life and the actual product life.
Technical Paper

Further CFD Studies for Detailed Tires using Aerodynamics Simulation with Rolling Road Conditions

2010-04-12
2010-01-0756
In an environment of tougher engineering constraints to deliver tomorrow's aerodynamic vehicles, evaluation of aerodynamics early in the design process using digital prototypes and simulation tools has become more crucial for meeting cost and performance targets. Engineering needs have increased the demands on simulation software to provide robust solutions under a range of operating conditions and with detailed geometry representation. In this paper the application of simulation tools to wheel design in on-road operating conditions is explored. Typically, wheel and wheel cover design is investigated using physical tests very late in the development process, and requires costly testing of many sets of wheels in an on-road testing environment (either coast-down testing or a moving-ground wind-tunnel).
Technical Paper

Integrated Virtual Approach for Optimization of Vehicle Sensitivity to Brake Torque Variation

2013-04-08
2013-01-0596
Brake judder is a brake induced vibration that a vehicle driver experiences in the steering wheel or floor panel at highway speeds during vehicle deceleration. The primary cause of this disturbance phenomenon is the brake torque variation (BTV). Virtual CAE tools from both kinematics and compliance standpoints have been applied in analyzing sensitivities of the vehicle systems to BTV. This paper presents a recently developed analytical approach that identifies parameters of steering and suspension systems for achieving optimal settings that desensitize the vehicle response to BTV. The analytical steps of this integrated approach started with creating a lumped mass noise-vibration-harshness (NVH) control model and a separate multi-body dynamics (MBD) suspension model. Then, both models were linked to run in a sequence through optimization software so the results from the MBD model were used as quasi-static inputs to the lumped mass NVH model.
Technical Paper

Noise Contribution Analysis at Suspension Interfaces Using Different Force Identification Techniques

2011-05-17
2011-01-1600
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
X