Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
Technical Paper

Analysis of Thermocouple Temperature Response under Actual Vehicle Test Conditions

2008-04-14
2008-01-1175
Automotive thermal protection is one of the key areas in the vehicle development process. Critical decisions are usually based on temperature measurement during vehicle testing. Thermocouples are most widely used to determine the temperature of each component during specific test cycle. Therefore, the reliability and accuracy of the thermocouple measurements are of significant importance to the design and release engineers. Errors associated with temperature measurements of automotive components may be caused by radiation from exhaust surfaces such as exhaust manifold, catalytic converter, muffler or exhaust pipes. Other sources of error may be caused by the effect of ambient temperature or airflow if thermocouples are not properly installed. Several errors could arise from the attachment method of the thermocouple to the component or material of interest.
Technical Paper

Application of the Glinka's ESED Criterion in Optimization Design

2014-04-01
2014-01-0912
In order to take into account the local material non-linear elastic-plastic effects generated by notches, Glinka proposed the equivalent strain energy density (ESED) Criterion which has been widely accepted and used in fatigue theory and calculation for the last few decades. In this paper, Glinka's criterion is applied to structural optimization design for elastic-plastic correction to consider material non-linear elastic-plastic effects. The equivalent (fictitious) stress was derived from Glinka's Criterion equation for the commonly used Ramberg-Osgood and bi-linear stress and strain relationships. This equivalent stress can be used as the stress boundary constraint threshold in structural optimization design to control the elastic-plastic stress or strain in nonlinear optimization.
Technical Paper

Design and Control of Transmission Systems using Physical Model Simulation

2010-04-12
2010-01-0898
Physical modeling has been used by the industry to improve development time and produce a quality product. In this paper, we will describe two methods used in system control to take advantage of the physical model. One method describes a complete transmission physical model with a full system control utilizing co-simulation techniques. Data will be presented, and comparison to vehicle data will be conducted and verified. The second method will illustrate how to utilize the physical model to improve system design and modification. In this method, vehicle data will be used as inputs to the model, the model output will be verified against vehicle output data. The two methods are excellent tools for the Design For Six Sigma process (DFSS design).
Technical Paper

Friction Stir Welding of Aluminum for Automotive Closure Panel Applications

2008-04-14
2008-01-0145
Friction stir welding (FSW) shows advantages for joining lightweight alloys for automotive applications. In this research, the feasibility of friction stir welding aluminum for an automotive component application was studied. The objective of this research was to improve the Friction Stir Spot Welding (FSSW) technique used to weld an aluminum closure panel (CP). The spot welds were made using the newly designed swing-FSSW technique. In a previous study (unpublished), the panel was welded from the thin to thick side using both an 8 mm and a 10 mm diameter tool. The 10 mm tool passed various fatigue tests; however, the target was to improve performance of the 8 mm tool, especially to increase the number of cycle before the first crack appearance during fatigue testing. In this study fatigue tests and static strength was recorded for weld specimens that were welded from thick-to-thin with an 8 mm diameter tool.
Technical Paper

Lessons Learned for Effective Design Verification

2009-04-20
2009-01-0559
The ultimate goal of reliability engineering is to prevent design failure modes in the field. Effective design verification can be a powerful tool toward achieving this goal. Reducing development time, minimizing cost, and improving quality are further challenges which drive effective design verification. This paper explains the key steps required to develop an effective design verification plan and report (DVP&R). In addition, lessons learned will be discussed using specific examples of undesirable practices. Design for Six Sigma (DFSS) verification phase requirements are also examined.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
X