Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.