Refine Your Search

Topic

Author

Search Results

Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Journal Article

A Thermal Bus for Vehicle Cooling Applications - Design and Analysis

2017-03-28
2017-01-0266
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
Technical Paper

A User-Centered Design Exploration of Fully Autonomous Vehicles’ Passenger Compartments for At-Risk Populations

2018-04-03
2018-01-1318
Autonomous vehicles have the potential to provide mobility to individuals who experience transportation disadvantages due to the inability to drive as a result of physical, cognitive or visual limitations/impairments as well as able-bodied individuals with no/limited desire to drive. Individuals who do not have easy access to transportation have social, academic, health, and career disadvantages in comparison to their peers. Fully autonomous vehicles have the potential to offer mobility solutions to these individuals. A user-centered design approach was utilized by a multidisciplinary team of engineers, human factors specialists, and designers to develop future vehicle features for a broad range of users.
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Technical Paper

A Voice and Pointing Gesture Interaction System for On-Route Update of Autonomous Vehicles’ Path

2019-04-02
2019-01-0679
This paper describes the development and simulation of a voice and pointing gesture interaction system for on-route update of autonomous vehicles’ path. The objective of this research is to provide users of autonomous vehicles a human vehicle interaction mode that enables them to make and communicate spontaneous decisions to the autonomous car, modifying its pre-defined autonomous route in real-time. For example, similar to giving directions to a taxi driver, a user will be able to tell the car «Stop there» or «Take that exit». In this way, the user control/spontaneity vs interaction flexibility dilemma that current autonomous vehicle concepts have, could be solved, potentially increasing the user acceptance of this technology. The system was designed following a level structured state machine approach. The simulations were developed using MATLAB and VREP, a robotics simulation platform, which has accurate vehicle and sensor models.
Technical Paper

Advanced Inflatable Airlock System for EVA

2002-07-15
2002-01-2314
The Advanced Inflatable Airlock (AIA) System is currently being developed for the 2nd Generation Reusable Launch Vehicle (RLV). The objective of the AIA System is to greatly reduce the cost associated with performing extravehicular activity (EVA) from the RLV by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA System builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. This paper discusses the AIA conceptual design and key features that will help meet the 2nd Generation RLV program goals of reduced cost and program risk.
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Journal Article

An Electric Motor Thermal Bus Cooling System for Vehicle Propulsion - Design and Test

2020-04-14
2020-01-0745
Automotive and truck manufacturers are introducing electric propulsion systems into their ground vehicles to reduce fossil fuel consumption and harmful tailpipe emissions. The mobility shift to electric motors requires a compact thermal management system that can accommodate heat dissipation demands with minimum energy consumption in a confined space. An innovative cooling system design, emphasizing passive cooling methods coupled with a small liquid system, using a thermal bus architecture has been explored. The laboratory experiment features an emulated electric motor interfaced to a thermal cradle and multiple heat rejection pathways to evaluate the transfer of generated heat to the ambient surroundings. The thermal response of passive (e.g., carbon fiber, high thermal conductivity material, thermosyphon) and active cooling systems are investigated for two operating scenarios.
Technical Paper

An Exergy-Based Methodology for Decision-Based Design of Integrated Aircraft Thermal Systems

2000-10-10
2000-01-5527
This paper details the concept of using an exergy-based method as a thermal design methodology tool for integrated aircraft thermal systems. An exergy-based approach was applied to the design of an environmental control system (ECS) of an advanced aircraft. Concurrently, a traditional energy-based approach was applied to the same system. Simplified analytical models of the ECS were developed for each method and compared to determine the validity of using the exergy approach to facilitate the design process in optimizing the overall system for a minimum gross takeoff weight (GTW). The study identified some roadblocks to assessing the value of using an exergy-based approach. Energy and exergy methods seek answers to somewhat different questions making direct comparisons awkward. Also, high entropy generating devices can dominate the design objective of the exergy approach.
Technical Paper

An Immersive Vehicle-in-the-Loop VR Platform for Evaluating Human-to-Autonomous Vehicle Interactions

2019-04-02
2019-01-0143
The deployment of autonomous vehicles in real-world scenarios requires thorough testing to ensure sufficient safety levels. Driving simulators have proven to be useful testbeds for assisted and autonomous driving functionalities but may fail to capture all the nuances of real-world conditions. In this paper, we present a snapshot of the design and evaluation using a Cooperative Adaptive Cruise Control application of virtual reality platform currently in development at our institution. The platform is designed so to: allow for incorporating live real-world driving data into the simulation, enabling Vehicle-in-the-Loop testing of autonomous driving behaviors and providing us with a useful mean to evaluate the human factor in the autonomous vehicle context.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Journal Article

An Integrated Cooling System for Hybrid Electric Vehicle Motors: Design and Simulation

2018-04-03
2018-01-1108
Hybrid electric vehicles offer the advantages of reduced emissions and greater travel range in comparison to conventional and electric ground vehicles. Regardless of propulsion strategy, efficient cooling of electric motors remains an open challenge due to the operating cycles and ambient conditions. The onboard thermal management system must remove the generated heat so that the motors and other vehicle components operate within their designed temperature ranges. In this article, an integrated thermal structure, or cradle, is designed to efficiently transfer heat within the motor housing to the end plates for transmission to an external heat exchanger. A radial array of heat pipes function as an efficient thermal connector between the motor and heat connector, or thermal bus, depending on the configuration. Cooling performance has been evaluated for various driving cycles.
Technical Paper

Benchmarking the Localization Accuracy of 2D SLAM Algorithms on Mobile Robotic Platforms

2020-04-14
2020-01-1021
Simultaneous Localization and Mapping (SLAM) algorithms are extensively utilized within the field of autonomous navigation. In particular, numerous open-source Robot Operating System (ROS) based SLAM solutions, such as Gmapping, Hector, Cartographer etc., have simplified deployments in application. However, establishing the accuracy and precision of these ‘out-of-the-box’ SLAM algorithms is necessary for improving the accuracy and precision of further applications such as planning, navigation, controls. Existing benchmarking literature largely focused on validating SLAM algorithms based upon the quality of the generated maps. In this paper, however, we focus on examining the localization accuracy of existing 2-dimensional LiDAR based indoor SLAM algorithms. The fidelity of these implementations is compared against the OptiTrack motion capture system which is capable of tracking moving objects at sub-millimeter level precision.
Technical Paper

Breadboard Development of the Advanced Inflatable Airlock System for EVA

2003-07-07
2003-01-2449
The advanced inflatable airlock (AIA) system was developed for the Space Launch Initiative (SLI). The objective of the AIA system is to greatly reduce the cost associated with performing extravehicular activity (EVA) from manned launch vehicles by reducing launch weight and volume from previous hard airlock systems such as the Space Shuttle and Space Station airlocks. The AIA system builds upon previous technology from the TransHab inflatable structures project, from Space Shuttle and Space Station Airlock systems, and from terrestrial flexible structures projects. The AIA system design is required to be versatile and capable of modification to fit any platform or vehicle needing EVA capability. During the basic phase of the program, the AIA conceptual design and key features were developed to help meet the SLI program goals of reduced cost and program risk.
Technical Paper

Clarity of View: An AHP Multi-Factor Evaluation Framework for Driver Awareness Systems in Heavy Vehicles

2015-04-14
2015-01-1704
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance accuracy, image detection time, and distortion.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Technical Paper

Design of a Portable Thermoelectric Convective Cooling System for Neighborhood Electric Vehicles and Other Applications

2019-04-02
2019-01-0499
Automotive technology is increasingly reliant on electrically driven accessories, systems, and payloads thanks to the rising popularity of electric and hybrid electric vehicles. Solid state and similar purely electrical solutions such as thermoelectric devices are eminently preferable sources for thermal management in neighborhood electric vehicles (NEVs) and similar short-range automobiles which often do not come stock with a climate control system. Directed convection strategies such as zone cooling using DC electric current are a natural fit for the infinitely scalable thermal control architecture possible with thermoelectrics. One such prototype device, actuated by thermoelectric devices, has been developed to meet a variety of thermal management needs with a versatile, portable system suitable for NEVs, micro cars without air conditioning, or even more specialized cooling needs.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
X