Refine Your Search

Topic

Search Results

Technical Paper

A Control Algorithm for Low Pressure - EGR Systems Using a Smith Predictor with Intake Oxygen Sensor Feedback

2016-04-05
2016-01-0612
Low-pressure cooled EGR (LP-cEGR) systems can provide significant improvements in spark-ignition engine efficiency and knock resistance. However, open-loop control of these systems is challenging due to low pressure differentials and the presence of pulsating flow at the EGR valve. This research describes a control structure for Low-pressure cooled EGR systems using closed loop feedback control along with internal model control. A Smith Predictor based PID controller is utilized in combination with an intake oxygen sensor for feedback control of EGR fraction. Gas transport delays are considered as dead-time delays and a Smith Predictor is one of the conventional methods to address stability concerns of such systems. However, this approach requires a plant model of the air-path from the EGR valve to the sensor.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

2016-04-05
2016-01-0620
Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Technical Paper

An Advanced Automatic Transmission with Interlocking Dog Clutches: High-Fidelity Modeling, Simulation and Validation

2017-03-28
2017-01-1141
Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Technical Paper

Assessment of Model-Based Knock Prediction Methods for Spark-Ignition Engines

2017-03-28
2017-01-0791
Knock-limited engine operation is one of the most important constraints on fuel efficiency and performance that must be considered during the design, control algorithm development and calibration of spark-ignition engines. This research evaluates the accuracy of model-based knock prediction routines and their applicability for control-oriented applications over various engine operating conditions using commercial fuels. Two common methods of knock prediction, a generalized chemical kinetics model and an empirical induction-time correlation, are evaluated and compared against experimental data. The experimental investigation is conducted using a naturally aspirated 3.6L V6 engine, retrofitted with cooled Exhaust Gas Recirculation (EGR). Data are acquired from spark timing sweeps under knocking conditions at different engine speeds and loads in an engine dynamometer cell.
Journal Article

Automotive Waste Heat Recovery after Engine Shutoff in Parking Lots

2019-04-02
2019-01-0157
1 The efficiency of internal combustion engines remains a research challenge given the mechanical friction and thermodynamic losses. Although incremental engine design changes continue to emerge, the harvesting of waste heat represents an immediate opportunity to address improved energy utilization. An external mobile thermal recovery system for gasoline and diesel engines is proposed for use in parking lots based on phase change material cartridges. Heat is extracted via a retrofitted conduction plate beneath the engine block after engine shutoff. An autonomous robot attaches the cartridge to the plate and transfers the heat from the block to the Phase Change Material (PCM) and returns later to retrieve the packet. These reusable cartridges are then driven to a Heat Extraction and Recycling Tower (HEART) facility where a heat exchanger harvests the thermal energy stored in the cartridges.
Technical Paper

Characterization of Aging Effect on Three-Way Catalyst Oxygen Storage Dynamics

2016-04-05
2016-01-0971
The Three Way Catalyst (TWC) is an effective pollutant conversion system widely used in current production vehicles to satisfy emissions regulations. A TWC’s conversion efficiency degrades over time due to chemical and/or thermal mechanisms causing the catalyst to age. This reduction in conversion efficiency must be accounted for to ensure full useful life emissions compliance. This paper presents an experimental study of the aging impact on TWC performance. Four TWCs differentiated by their age, given in terms of miles driven, were tested. It is shown that the dynamics of oxygen storage are substantially affected by aging of the TWC. A previously developed physics-based oxygen storage model [1] is subsequently used to incorporate the effect of aging on the total Oxygen Storage Capacity (OSC). Parameter identification results for the different age catalysts show that total oxygen storage capacity decreases substantially with aging and is insensitive to operating conditions.
Technical Paper

Characterization of a Multiple-Evaporator Capillary Pumped Loop

2005-07-11
2005-01-2884
The current work addresses efforts to characterize multiple-evaporator capillary pumped loops. Both experimental and analytical approaches were used to predict performance of parallel evaporators and corresponding effects from adjacent operating evaporators. The effects of low and high power dissipation and the distribution of powers among the evaporators were tested. Additionally, a pressure balance model is given where the maximum heat transfer capacity for an evaporator operating under a multi-evaporator condition is determined based on pressure distribution throughout the loop. The model and experiment comparisons demonstrated how the heat load distribution among evaporators affects the maximum capillary limit for individual evaporators operating in a multiple evaporator mode.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Cylinder-to-Cylinder Variation of Losses in Intake Regions of IC Engines

1998-02-23
981025
Very large scale, 3D, viscous, turbulent flow simulations, involving 840,000 finite volume cells and the complete form of the time-averaged Navier-Stokes equations, were conducted to study the mechanisms responsible for total pressure losses in the entire intake system (inlet duct, plenum, ports, valves, and cylinder) of a straight-six diesel engine. A unique feature of this paper is the inclusion of physical mechanisms responsible for cylinder-to-cylinder variation of flows between different cylinders, namely, the end-cylinder (#1) and the middle cylinder (#3) that is in-line with the inlet duct. Present results are compared with cylinder #2 simulations documented in a recent paper by the Clemson group, Taylor, et al. (1997). A validated comprehensive computational methodology was used to generate grid independent and fully convergent results.
Journal Article

Design and Modeling of a Novel Internal Combustion Engine with Direct Hydraulic Power Take-off

2013-04-08
2013-01-1733
This paper introduces a Hydraulic Linear Engine (HLE) concept and describes a model to simulate instantaneous engine behavior. The United States Environmental Protection Agency has developed an HLE prototype as an evolution of their previous six-cylinder, four-stroke, free-piston engine (FPE) hardware. The HLE design extracts work hydraulically, in a fashion identical to the initial FPE, and is intended for use in a series hydraulic hybrid vehicle. Unlike the FPE, however, the HLE utilizes a crank for improved timing control and increased robustness. Preliminary experimental results show significant speed fluctuations and cylinder imbalance that require careful controls design. This paper also introduces a model of the HLE that exhibits similar behavior, making it an indispensible tool for controls design. Further, the model's behavior is evaluated over a range of operating conditions currently unobtainable by the experimental setup.
Technical Paper

Design of a Scaled Off-Vehicle Wheel Testing Device for Textile Tread Wear

2009-04-20
2009-01-0562
This paper describes the development of test equipment for determining the wear viability of various lunar wheel tread materials with service lives of up to ten years and 10,000 km. The problem is defined, and concepts are proposed, evaluated, and selected. An abrasive turntable is chosen for simplicity and accuracy of modeling the original wheel configuration. Additionally, the limitations of the test are identified, such as the sensitivity to off-vertical loading, and future work is projected in order to more effectively continue testing. Finally, this paper presents the challenges of collaborative research effort between an undergraduate research team and industry, with government lab representatives as customers
Journal Article

Determining Three-Way Catalyst Age Using Differential Lambda Signal Response

2017-03-28
2017-01-0982
The duration over which a three way catalyst (TWC) maintains proper functionality during lambda excursions is critically impacted by aging, which affects its oxygen storage capacity (OSC). As such, emissions control strategies, which strive to maintain post TWC air-to-fuel ratios at the stoichiometric value, will benefit from an accurate estimation of TWC age. To this end, this investigation examines a method of TWC age estimation suitable for real-world transient operation. Experimental results are harvested from an instrumented test vehicle equipped with a two-brick TWC during operation on a chassis dynamometer. Four differently aged TWCs are instrumented with wideband and switch-type Lambda sensors upstream (Pre TWC location), and downstream (Mid location) of first catalyst brick.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Technical Paper

Effects of Condenser Two-Phase Flow Characteristics on a Capillary Pumped Loop

2000-07-10
2000-01-2321
One of the intrinsic characteristics found in CPL operation is the oscillatory behavior of the pressure drop, even noted under seemingly steady operation. This study focused on the role of the condensing process and its intrinsic instabilities upon the differential pressure oscillations recorded in the CPL. Through an analytical study of condensing instabilities and an experimental study based on the correlation between pressure records and condensing flow visualization, the impact of slug flow phenomenon occurring in the condensing path was investigated. High amplitude oscillations were seen to be linked with liquid slug phenomena in the way that slug striking the final vapor-liquid interface generated pressure pulses.
X