Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

A Multi-Zone Model for Diesel Spray Combustion

1999-03-01
1999-01-0916
A quasi-dimensional multi-zone model for diesel spray combustion has been developed. The model contains most of the physical processes of diesel spray combustion, and is simplified and economical. The zone formation is based on the fuel injection parameters. For the wall jet penetration velocity, a new equation is used based on the effect of the impinging free jet on the wall jet. For the fuel evaporation, an approximate solution of the instantaneous variations of droplet diameter is given in the simple algebraic equations based on the individual effect of the evaporation and the heat transfer from ambient gas. The soot emission sub-model calculates the soot concentration. This model has been applied for a direct injection diesel engine. The calculated results have shown a reasonable agreement with the experimental results. A parametric study has been carried out.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

An Experimental Study on the Effects of Split Injection in Stoichiometric Dual-Fuel Compression Ignition (SDCI) Combustion

2015-04-14
2015-01-0847
Stoichiometric dual-fuel compression ignition (SDCI) combustion has superior potential in both emission control and thermal efficiency. Split injection of diesel reportedly shows superiority in optimizing combustion phase control and increasing flexibility in fuel selection. This study focuses on split injection strategies in SDCI mode. The effects of main injection timing and pilot-to-total ratio are examined. Combustion phasing is found to be retarded in split injection when overmixing occurs as a result of early main injection timing. Furthermore, an optimised split injection timing can avoid extremely high pressure rise rate without great loss in indicated thermal efficiency while maintaining soot emission at an acceptable level. A higher pilot-to-total ratio always results in lower soot emission, higher combustion efficiency, and relatively superior ITE, but improvements are not significant with increased pilot-to-total ratio up to approximately 0.65.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

2018-09-10
2018-01-1748
Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine

2004-10-25
2004-01-2901
This paper presents experimental studies of particulate emissions in a small SI engine fueled with LPG and gasoline fuels. A single cylinder, four-stroke, water-cooled, 125cc EFI engine with gasoline fuel is used as the baseline engine. Characteristics of the particulate emissions of the two fuels are compared. Test results show that: there are great quantities of particulate emissions for both fuels, but the total numbers of particulate emissions for the two fuels are generally in the same level. The distribution of the particulate sizes is in bimodal type for the gasoline, but for the LPG its first peak is not markedly in some conditions. The particulate sizes of the second peak for the two fuels appear at about the same size. At middle loads and 3000r/min, the particulate emissions for both of the two fuels are the greatest.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Technical Paper

Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine

2018-04-03
2018-01-0926
Wide Distillation Fuel (WDF), with a distillation range from Initial Boiling Point of gasoline to Final Boiling Point of diesel, can be easily gained directly by blending diesel with gasoline. However, the reduced auto-ignitability of WDF could lead to higher HC emissions. Polyoxymethylene Dimethyl Ethers (PODE), with good volatility and oxygen content of up to 49%, have great potential to improve combustion and emission characteristics, especially for soot reduction. Experiments were carried out in a light-duty four-cylinder diesel engine fueled with neat diesel, gasoline/diesel blends (GD), GD/PODE blends (GDP) and the combustion and emission characteristics were carefully examined. Results showed that GDP had the lowest PM emission and diesel had the poorest one among the three fuels. Due to the addition of gasoline and the relatively poor ignitability, GD had lower combustion efficiency and higher Soluble Organic Fraction (SOF) emissions than diesel.
Technical Paper

Combustion and Emission Characteristics of WDF in a Light-Duty Diesel Engine over Wide Load Range

2017-10-08
2017-01-2265
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from initial boiling point of gasoline to final boiling point of diesel. Recent experimental results have shown WDF by blending 50% gasoline and 50% diesel (G50) exhibits much lower soot emissions than diesel at medium load with similar thermal efficiency. However, the engine performances fueled by G50 at both low load end and high load end are still unknown. In this study, the combustion and emission characteristics of G50 and diesel are compared over a wide load range from 0.2 MPa IMEP to 1.4 MPa IMEP at a light-duty diesel engine. The results shown that at 0.2 MPa IMEP, G50 exhibits low combustion stability and thermal efficiency. With the increase of load, the poor combustion quality of G50 is improved. G50 can achieve soot-free combustion up to 1.0 MPa IMEP, while diesel cannot.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

2003-10-27
2003-01-3260
This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

Effect of Fuel Detergent on Injector Deposit Formation and Engine Emissions in a Gasoline Direct Injection (GDI) Engine

2017-10-08
2017-01-2247
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
Technical Paper

Effect of Oil Viscosity and Driving Mode on Oil Dilution and Transient Emissions Including Particle Number in Plug-In Hybrid Electric Vehicle

2020-04-14
2020-01-0362
Plug-in electric vehicle (PHEV) has a promising prospect to reduce greenhouse gas (GHG) emission and optimize engine operating in high-efficiency region. According to the maximum electric power and all-electric range, PHEVs are divided into two categories, including “all-electric PHEV” and “blended PHEV” and the latter provides a potential for more rational energy distribution because engine participates in vehicle driving during aggressive acceleration not just by motor. However, the frequent use of engine may result in severe emissions especially in low state of charge (SOC) and ahead of catalyst light-off. This study quantitatively investigates the impact of oil viscosity and driving mode (hybrid/conventional) on oil dilution and emissions including particle number (PN).
Technical Paper

Effects of Aromatic and Olefin on the Formations of PAHs in GDI Engine

2017-10-08
2017-01-2390
In this paper, the impacts of Aromatic and Olefin on the formation of poly-aromatic hydrocarbons (PAHs) in the gasoline direct injection (GDI) engine were experimentally and numerically investigated. The objective of this study is to describe the formation process of the soot precursors including one ring to four ring aromatics (A1-A4). In order to better understand the effects of the fuel properties on the formations of PAHs. Three types of fuels, namely base gasoline, gasoline with higher aromatics content, and gasoline with higher olefin content were experimentally studied. At the same time, these aspects were also numerically investigated in the CHEMKIN code by using premixed laminar flame model and surrogated fuels. The results show that higher aromatics content in gasoline will lead to much higher PAHs formation. Similar trend was also found in the gasoline with higher olefin content.
X