Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Journal Article

3D Coverage Control and Target Orientation Alignment Using Unmanned Ground Vehicle with Onboard Camera Sensor

2023-04-11
2023-01-0693
This paper addresses a three dimensional (3D) mission domain coverage control problem combined with camera pose control to align towards specific objects of interest. We consider an unmanned ground vehicle (UGV) based on a unicycle kinematics model with an onboard camera sensor based on a visual perspective sensor model. The coverage control problem has been researched in large part for planar domains, which is however not sufficient for real world applications for UGV navigation. Furthermore, in contrast to coverage control of points in the environment, when dealing with objects of interest, it is more amicable to consider that there exist certain orientations to which the camera must align itself to properly cover the object and make ‘sense’ of it. Hence, we seek to derive both UGV coverage control law for 3D mission domains and onboard camera pose control considering target orientation.
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Control Algorithm for Low Pressure - EGR Systems Using a Smith Predictor with Intake Oxygen Sensor Feedback

2016-04-05
2016-01-0612
Low-pressure cooled EGR (LP-cEGR) systems can provide significant improvements in spark-ignition engine efficiency and knock resistance. However, open-loop control of these systems is challenging due to low pressure differentials and the presence of pulsating flow at the EGR valve. This research describes a control structure for Low-pressure cooled EGR systems using closed loop feedback control along with internal model control. A Smith Predictor based PID controller is utilized in combination with an intake oxygen sensor for feedback control of EGR fraction. Gas transport delays are considered as dead-time delays and a Smith Predictor is one of the conventional methods to address stability concerns of such systems. However, this approach requires a plant model of the air-path from the EGR valve to the sensor.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

A Control Strategy Based on Exact Linearization for Electromagnetic Valve Actuation

2007-04-16
2007-01-1596
Electromagnetic Valve Actuation (EVA) is considered to be a potential substitute of conventional valvetrains for automotive engines. However, valve quiet-seating (soft-landing) is difficult to be achieved. The EVA system and hence its’ mathematic model is nonlinear. Therefore, when linear control is used for EVA, firstly, the model has to be linearized at an equilibrium point through Taylor expansion. Consequently, the linearized model and control are valid only for a small range around the equilibrium point. This paper presents a control strategy for the whole transition of EVA, which combines exact linearization with Linear Quadratic Regulator (LQR). Firstly, the nonlinear EVA model is transformed to be linear in a new coordinate by using exact linearization, so the nonlinear model is not involved. Then the exact-linearized model is used for the EVA control with LQR.
Technical Paper

A Diesel Engine Emission System Based on Brownian Diffusion a Separation

2021-04-06
2021-01-0583
Diesel engine exhaust poses an ongoing threat to human health as well as to the environment. Automotive exhaust treatment systems have been developed over the years to reduce the large amount of diesel particulate matter (DPM) released to the atmosphere. Current systems can be categorized as selective catalytic reduction, catalytic converters, and diesel particulate filters. This study presents an emission system that focuses on the removal of exhaust particles using Brownian diffusion of DPM toward fog drops followed by cyclonic separation of DPM rich fog drops. The experimental system consisted of a 13.2 kW diesel engine, heat exchanger to cool the exhaust to saturation temperature, ultrasonic fogger, cyclone separator, and recovery of waste particulate. Representative emission tests have been performed at five different diesel engine speeds and corresponding crankshaft loads.
Technical Paper

A Digital Design Agent for Ground Vehicles

2024-04-09
2024-01-2004
The design of transportation vehicles, whether passenger or commercial, typically involves a lengthy process from concept to prototype and eventual manufacture. To improve competitiveness, original equipment manufacturers are continually exploring ways to shorten the design process. The application of digital tools such as computer-aided-design and computer-aided-engineering, as well as model-based computer simulation enable team members to virtually design and evaluate ideas within realistic operating environments. Recent advances in machine learning (ML)/artificial intelligence (AI) can be integrated into this paradigm to shorten the initial design sequence through the creation of digital agents. A digital agent can intelligently explore the design space to identify promising component features which can be collectively assessed within a virtual vehicle simulation.
Technical Paper

A Driving Simulator Study of Young Driver’s Behavior under Angry Emotion

2019-04-02
2019-01-0398
The driving behaviors of young drivers under the influence of anger are analyzed by driving simulator in this paper. A total of 12 subjects are enrolled during the experiment. Standardized videos are utilized to induce the driver's anger emotion. And the driver's electrocardiogram (ECG) signal is collected synchronously and compared before and after emotional trigger, which prove the validity of emotional trigger. Based on the result, the driver's driving performance under the straight road and the curve under normal state and angry state are compared and analyzed. The results of independent sample t-test show that there are significant differences in the running time of straight sections and the standard deviation of steering wheel angle in curves between normal and angry states. In conclusion, the longitudinal and lateral operation of drivers is unstable in angry state and the driver will be more destructive to the regular driving behavior.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper

A Finite Element Design Study and Performance Evaluation of an Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Vehicle Door Assembly

2020-04-14
2020-01-0203
The ever-growing concern to reduce the impact of transportation systems on environment has pushed automotive industry towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of automobile components has proven broadly effective. A substantial effort is devoted to lightweighting body-in-white which contributes ~35% of total weight of vehicle. Closure systems, however, have been often overlooked. Closure systems are extremely important as they account for ~ 50% of structural mass and have a very diverse range of requirements, including crash safety, durability, strength, fit, finish, NVH, and weather sealing. To this end, a carbon fiber-reinforced thermoplastic composite door is being designed for an OEM’s mid-size SUV, that enables 42.5% weight reduction. In this work, several novel composite door assembly designs were developed by using an integrated design, analysis and optimization approach.
Technical Paper

A First Look at Android Automotive Privacy

2023-04-11
2023-01-0037
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII).
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

A Hardware-in-the-Loop Simulator for Vehicle Adaptive Cruise Control Systems by Using xPC Target

2007-08-05
2007-01-3596
A HIL simulator for developing vehicle adaptive cruise control systems is presented in this paper. The xPC target is used to establish real-time simulation environment. The simulator is composed of a virtual vehicle model, real components of an ACC system like ECU, electronic throttle and braking modulator, a user interface to facilitate simulation, and brake and accelerator pedals to make interactive driver inputs easier. The vehicle model is validated against data from field test. Tests of an ACC controller in the real-time are conducted on the simulator.
X