Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Electrochemical Characteristics of Cubic ZnFe2O4 Anode for Li-Ion Batteries at Low Temperature

2016-04-05
2016-01-1215
The poor low-temperature behavior of Li-ion batteries has limited its application in the field of electric vehicles and hybrid electric vehicles. Many previous studies concentrate on developing new type of electrolyte to solve this problem. However, according to recent research, the key limitation at low temperature is the low diffusivity of lithium ion in the anode electrodes. Hence, it is potential to study anode materials to improve low-temperature behavior of LIBs. ZnFe2O4 with higher theoretical capacity is low toxicity and abundance, contributing to its commercial application. Different ZnFe2O4 crystalline shapes have different particle sizes. Among them, the cubic ZnFe2O4 with smaller particle size will increase its own electronic and ionic conductance at lower temperature. In this regard, we evaluated low-temperature performance of LIBs with ZnFe2O4 cubes as anode materials at -25°C.
Technical Paper

Investigation of Diffuse Axonal Injury in Rats Induced by the Combined Linear and Rotational Accelerations Using Diffusion Tensor Imaging

2024-04-09
2024-01-2513
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1.
Technical Paper

Multifactorial Mechanical Properties Study on Rat Skin at Intermediate Strain Rates - Using Orthogonal Experimental Design

2024-04-09
2024-01-2512
Most of the skin injuries caused by traffic accidents, sports, falls, etc. are in the intermediate strain rate range (1-100s-1), and the injuries may occur at different sites, impact velocities, and orientations. To investigate the multifactorial mechanical properties of rat skin at intermediate strain rates, a three-factor, three-level experimental protocol was established using the standard orthogonal table L9(34), which includes site (upper dorsal, lower dorsal, and ventral side), strain rate (1s-1, 10s-1, and 100 s-1), and sampling orientation (0°, 45°, and 90° relative to the spine). Uniaxial tensile tests were performed on rat skin samples according to the protocol to obtain stress-stretch ratio curves. Failure strain energy was selected as the index, and the influence of each factor on these indexes, the differences between levels of each factor, and the influence of errors on the results were quantified by analysis of variance (ANOVA).
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

Study on Influencing Factors of Hippocampal Injury in Closed Head Impact Experiments of Rats Using Orthogonal Experimental Design Method

2023-04-11
2023-01-0001
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L9(34) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance.
Journal Article

Study on the Cumulative Effect of Acute Repetitive Traumatic Brain Injury: An Experimental Animal Research

2022-03-29
2022-01-0865
Acute repetitive traumatic brain injury (rTBI) can occur in a pedestrian collision when the head hits the vehicle and the ground twice, as well as in a serial rear-ended collision in a very short period. This study established an animal model of acute rTBI to investigate the cumulative effects of repetitive brain injury under different combinations of impact levels. 117 adult male Sprague–Dawley (SD) rats (190±20g) were divided into control, single impact, and repeated impact groups, with the single impact group was divided into three subgroups of mild, moderate, and severe. And the repeated impact group was divided into nine subgroups by combining mild, moderate, and severe. The kinematic response parameters of the rat’s head were captured by a high-speed camera and acceleration sensors. Modified neurological severity score (mNSS) was performed at 6h after final injury, and the severity of injury was quantified using the abbreviated injury scale (AIS).
Technical Paper

Tensile Properties of Rat Skin in Dorsal and Ventral Regions

2023-04-11
2023-01-0008
In this paper, tensile experiments were performed on the dorsal and ventral skin of rats, and the mechanical properties of the skin in these two sites were compared and analyzed. A three-factor experimental protocol of site (dorsal and ventral), strain rate (0.71s-1, 7.1×10-3s-1), and sampling orientation (0°, 45° and 90° relative to the spine) was established for tensile test using the L6(31×22) orthogonal table modified from the standard orthogonal table L4 (23). Uniaxial tensile experiments were performed on rat skin samples to calculate the stress-strain curve. The failure strain energy was selected as the index, and the sum of squared deviations of the factors to the index was calculated by analysis of variance (ANOVA), and the contributions of the factors to the failure strain energy were evaluated. The results showed that the site factor has the largest effect on the tensile strain energy with a contribution of 88.9% and a confidence level of 95%.
X