Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Technical Paper

Optical study on combustion transition from HCCI to PPC with gasoline compression ignition in a HD engine

2016-04-05
2016-01-0768
The partially premixed combustion (PPC) concept has shown high efficiency with low soot emissions. However, the in-cylinder phenomena are still to be explained and evaluated for further progress in the research. This work studies the start of combustion process during a transition from homogenous charge compression ignition (HCCI) to PPC. The process is visualized using a heavy-duty, non-swirling engine modified for optical access. High speed video was used to capture the natural luminosity of the combustion. The fuel used was PRF87. Single and double injection strategies were used at a load kept to the moderate level of 7.5 bar IMEPg. Single injections were swept from early HCCI to retarded PPC conditions whilst running a cycle to cycle temperature sweep, to capture the effect of injection timing and temperature differences simultaneously. Results show that retarded injections show less cycle-to-cycle variation due to temperature variations.
X