Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Advanced Power Sources for a New Generation of Vehicles

2000-04-02
2000-01-1528
The U.S. Department of Energy (DOE) and the U.S. automotive industry are collaborating on research and development of advanced compression ignition direct injection (CIDI) engine technology and polymer electrolyte membrane (PEM) fuel cells for automotive applications. Under the auspices of the Partnership for a New Generation of Vehicles (PNGV), the partners are developing technologies to power an automobile that can achieve up to 80 miles per gallon (mpg), while meeting customer needs and all safety and emissions requirements. Research on enabling technologies for CIDI engines is focusing on advanced emissions control to meet the proposed stringent Environmental Protection Agency emissions standards for oxides of nitrogen (NOx) and particulate matter (PM) in 2004, while retaining the high efficiency and other traditional advantages of CIDI engines.
Technical Paper

Diesel Fumigation Partial Premixing for Reducing Ignition Delay and Amplitude of Pressure Fluctuations

1998-02-23
980535
The results of an experimental study in a DI Diesel engine are presented which shows that partial premixing, using direct diesel fumigation of the inlet air, achieved a reduction in the ignition delay, the magnitude of high frequency rapid pressure fluctuations, the maximum rate of pressure rise and the amplitude of the rate of the high frequency pressure oscillations. Two methods of diesel fumigation were investigated. The difference between these two methods was the degree of premixing of diesel fuel with the inlet air. The first technique used a fine (5 micron) diesel spray onto a glow plug and the second technique used prevaporised diesel. A Perkins 4-236 engine was run both with and without fumigation at two different steady state speeds roughly covering both city and highway running conditions.
Technical Paper

Effect of an Oxidation Catalyst on Exhaust Emissions of a DI Diesel Engine Operating with Fumigation of the Intake Air with Superheated Steam

2002-05-06
2002-01-1727
An oxidation catalyst was fitted on a DI diesel engine for an experimental study involving an oxidation catalyst and the use of superheated steam for fumigating the intake air. Results are compared with that of the influence of low level of fumigation of the intake air with superheated diesel fuel. Exhaust emissions of NOx, CO, UHC, TPM, SOF and Carbon were measured and quantified on upstream and downstream of a low light off temperature (250 °C) oxidation catalyst. The technique used an electric vaporizer for producing superheated steam and prevaporised superheated diesel fumes at 350 °C, respectively. A low emissions version of Perkins 4-236 engine with squish lip piston was run both with and without fumigation at two speeds 1200 rpm and 2200 rpm. Roughly covering both city and highway running conditions.
Technical Paper

Effect of an Oxidation Catalyst on Exhaust Emissions of a DI Diesel Engine Operating with a Partial Fumigation of the Intake Air with Fuel

2002-05-06
2002-01-1726
Results showed the influence of the oxidation catalyst on exhaust emissions from a DI diesel engine due to the partial premixing, fumigation of the intake air with diesel fuel. Exhaust emissions of NOx, CO, UHC, TPM, SOF and Carbon were measured and quantified on upstream and downstream of a low light off temperature (250 °C) oxidation catalyst. Two methods of diesel fumigation of the intake air with fuel were used. The difference between these two methods was the degree of premixing of diesel fuel with the intake air. The first technique used a high-pressure fine diesel spray onto a glow plug and the second technique used an electric vaporizer for prevaporised superheated diesel fumes at 350 °C. A low emissions version of Perkins 4-236 engine with squish lip piston was run both with and without fumigation at two speeds 1200 rpm and 2200 rpm. Roughly covering both city and highway running conditions.
Technical Paper

NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen

2001-11-01
2001-28-0048
This numerical study examines the chemical-kinetics mechanism responsible for EGR NOx reduction in standard engines. Also, it investigates the feasibility of using EGR alone in hydrogen-air and methanol-air combustion to help generate and retain the same radicals previously found to be responsible for the inducement of the autoignition (in such mixtures) in IC engines with the SONEX Combustion System (SCS) piston micro-chamber. The analysis is based on a detailed chemical kinetics mechanism (for each fuel) that includes NOx production. The mechanism for H-air-NOx combustion makes use of 19 species and 58 reactions while the methanol-air-NOx mechanism is based on the use of 49 species and 227 reactions. It was earlier postulated that the combination of thermal control and charge dilution provided by the EGR produces an alteration in the combustion mechanisms (for both the hydrogen and methanol cases) that lowers peak cycle temperatures-thus greatly reducing the production of NOx.
Journal Article

On the Premixed Phase Combustion Behavior of JP-8 in a Military Relevant Single Cylinder Diesel Engine

2011-04-12
2011-01-0123
Current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility requirements of the particular ground vehicle in question. In either case, such engines traditionally have been calibrated using North American diesel fuel (DF-2) and Jet Propellant 8 (JP-8) compatibility wasn't given much consideration since any associated power loss due to the lower volumetric energy density was not an issue for most applications at then targeted climatic conditions. Furthermore, since the genesis of the ‘one fuel forward policy’ of using JP-8 as the single battlefield fuel there has been limited experience to truly assess fuel effects on diesel engine combustion systems until this decade.
Technical Paper

Oxygenates for Advanced Petroleum-Based Diesel Fuels: Part 1. Screening and Selection Methodology for the Oxygenates

2001-09-24
2001-01-3631
The overall program objectives were three fold: assess the benefits and limitations of oxygenated diesel fuels on engine performance and emissions identify oxygenates most suitable for potential use in future diesel formulations based on physico-chemical properties (e.g. flash point), toxicity, biodegradability and estimated cost of production perform limited emissions and performance testing of the oxygenated diesel blends select at least two oxygenated compounds for advanced engine testing In Part 1 of this program which is described in this paper, an extensive literature review was conducted to identify potential oxygenates for blending into diesel fuels. As many as 71 oxygenates were identified for the initial screening process. Based on a set of physical and chemical properties, a screening methodology was developed to select the 8 oxygenates that will be eligible for engine testing.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

The Influence of Residual Stresses on the Susceptibility to Hydrogen Embrittlement in Hardened Steel Components Subjected to Rolling Contact Conditions

2002-03-19
2002-01-1412
A review of many years of published work has shown that hydrogen embrittlement can occur under rolling contact conditions. Breakdown of lubrication and contamination with water have been cited as the probable sources of atomic hydrogen. In this paper, a unique fracture morphology is identified and the mechanism of the fracture progression from initiation to final catastrophic failure is proposed. Development of beneficial residual compressive stress near the contacting surfaces is one approach used to avoid this type of failure. Several alternative methods capable of developing a more desirable stress distribution will be discussed.
X