Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Advances in Durability and Performance of Ceramic Preconverter Systems

1995-02-01
950407
Ceramic preconverters have become a viable strategy to meet the California LEV and ULEV standards. To minimize cold start emissions the preconverter must light-off quickly and be catalytically efficient. In addition, it must also survive the more severe thermomechanical requirements posed by its close proximity to the engine. The viability of the ceramic preconverter system to meet both emissions and durability requirements has also been reported recently(1,2). This paper further investigates the impact preconverter design parameters such as cell density, composition, volume, and catalyst technology have on emissions and pressure drop. In addition, different preconverter/main converter configurations in conjunction with electrically heated catalyst systems are evaluated. The results demonstrate that ceramic preconverters substantially reduce cold start emissions. Their effectiveness depends on preconverter design and volume, catalyst technology, and the system configuration.
Technical Paper

Durability of Advanced Electrically Heated Catalyst Design

1996-02-01
960345
Testing was performed on Corning's Generation 3 Electrically Heated Catalyst (EHC) to determine product reliability and durability. A number of functional measurements was performed before and after all electrical, thermal/mechanical and environmental tests. EHCs were also successfully tested on vehicles for 100,000 miles. The results of all tests were favorable and indicated that the new design meets or exceeds requirements.
Technical Paper

Electrically Heated Extruded Metal Converters for Low Emission Vehicles

1992-02-01
920093
The primary objective of this work is to demonstrate that an extruded metal electrically heated catalyst (EHC) in combination with a traditional converter can achieve the Low and Ultra-Low California standards. With various aged EHC/converter systems and various heating strategies, typical FTP non-methane hydrocarbon (NMHC) emissions range from .015 to .030 g/mi. However, NMHC emissions as low as .008 g/mi are achieved. In addition to reducing emissions, experiments were conducted to investigate the impact various heating strategies and system design parameters have on electrical energy usage. The conclusions are that electrical energy requirements can be significantly reduced by: Locating the EHC close to the main converter. Locating the EHC and main converter close to the engine. Reducing the mass of the EHC. Heating the EHC prior to engine start-up.
Technical Paper

Emissions Performance of Extruded Electrically Heated Catalysts in Several Vehicle Applications

1995-02-01
950405
Low mass, extruded electrically heated catalysts (EHC) followed directly by a light-off and main converter reduced cold start non-methane hydrocarbons (NMHC) by greater than 80 percent. These reductions were demonstrated on several vehicle applications operating over the Light Duty Federal Test Procedure (FTP). To achieve this level of reduction, the design of the EHC cascade system, power level and heating time must be appropriately established. This paper discusses the impact of these design parameters on cold-start emissions reduction. From the test results, a generic empirical model was developed to predict EHC system conversion efficiency as a function of EHC power, heating time, and inlet exhaust temperature to the EHC.
Technical Paper

New Tests for Characterizing the Durability of a Ceramic Catalytic Converter Package

1996-02-01
960559
New test methods were developed to characterize the high temperature durability of intumescent mats that are used to mount ceramic catalyst supports in stainless steel cans. The key attribute of these tests is the use of an electric resistance heating method to maintain a temperature gradient through the thickness of the mat when a cyclic or constant shear stress is applied to the mat interface. These tests are simple to perform and do not require expensive equipment or highly skilled operators. Using these new test methods, the durability of ceramic preconverters mounted with 4070 gm/m2 intumescent mat was studied. The results of these tests indicate that a preconverter package with 4070 gm/m2 intumescent mat can perform satisfactorily in the close-coupled application where temperatures exceed 900°C. The mat performance can be quantified in terms of applied stress and test temperature by utilizing the experimental methods described in the present study.
Technical Paper

Performance Parameters for Advanced Ceramic Catalyst Supports

1999-10-25
1999-01-3631
The stringent emissions legislation has necessitated advances in the catalytic converter system comprising the substrate, washcoat technology, catalyst formulation and packaging design. These advances are focused on reducing light-off emissions at lower temperature or shorter time, increasing FTP efficiency, reducing back pressure and meeting the mechanical and thermal durability requirements over 100,000 vehicle miles. This paper reviews the role of cordierite ceramic substrate and how its design can help meet the stringent emissions legislation. In particular, it compares the effect of cell geometry and size on performance parameters like geometric surface area, open frontal area, hydraulic diameter, thermal mass, heat transfer factor, mechanical integrity factor and thermal integrity factor - all of which have a bearing on emissions, back pressure and durability. The properties of advanced cell configurations like hexagon are compared with those of standard square cell.
X