Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a Diesel Particulate Filter Composition and Its Effect on Thermal Durability and Filtration Performance

This paper details the development of the EX-80 composition, a new cordierite material for use as a diesel particulate filter (DPF), that was developed based on the following objectives; (1) improved thermal durability, (2) high filtration efficiency and (3) low pressure drop. The achievement of these goals was demonstrated through engine testing, stress modeling, and other evaluations. EX-80 has a low coefficient of thermal expansion (CTE) averaging less than 4x10-7°C-1 (25°C-800°C), the Modulus of Rupture (MOR) averages greater than 350 psi and the Modulus of Elasticity (MOE) averages less than 0.8 x 106 psi. The improvement of these three properties has resulted in improved thermal durability for EX-80 as compared to the current Corning DPF compositions (EX-47, EX-54 and EX-66). The new cordierite composition has been designed to achieve a low pressure drop as a function of soot loading (0.30 inHg/gm of soot collected), coupled with high efficiency, averaging greater than 90%.
Technical Paper

Durability of Extruded Electrically Heated Catalysts

Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Technical Paper

Optimization of Extruded Electrically Heated Catalysts

Low mass extruded electrically heated catalysts (EHC) followed directly by light-off and main converters resulted in non-methane hydrocarbon emissions (NMHC) between .020 and .023 g/mi at power levels as low as 1 kw and energy levels as low as 4 whr. These results were achieved on a 1993, 2.2 liter vehicle. The success of this system is due to rapid heat up of the catalyzed surface areas of both the heater and light-off converter. The energy added to the exhaust from both the heater and the light-off is then efficiently transferred to the main converter. In addition, the impact of power and energy on NMHC levels was determined. The Ultra-Low Emissions Vehicle (ULEV) standard was also achieved with uncatalyzed heaters and on a 1990, 3.8 L vehicle. The new California Low Emission Vehicle (LEV) and Ultra Low Emission Vehicle (ULEV) standards require a significant reduction in tail pipe emissions compared to current standards.
Technical Paper

Reduced Energy and Power Consumption for Electrically Heated Extruded Metal Converters

Improved designs of extruded metal electrically heated catalysts (EHC) in combination with a traditional converter achieved the California ultra-low emission vehicle (ULEV) standard utilizing 50% less electrical energy than previous prototypes. This energy reduction is largely achieved by reducing the mass of the EHC. In addition to energy reduction, the battery voltage is reduced from 24 volts to 12 volts, and the power is reduced from 12 kilowatts to 3 kilowatts. Also discussed is the impact EHC mass, EHC catalytic activity, and no EHC preheating has on non-methane hydrocarbon emissions, energy requirements, and power requirements.
Technical Paper

Technique for the Analysis of FTP Emissions

Previous papers have considered the role of the substrate in the catalyst system. It has been shown that the total catalyzed surface area of the substrate (defined as the substrate geometric surface area multiplied by the substrate volume) can act as a surrogate for the catalyst performance. The substrate affects the back pressure of the exhaust system and therefore, the available power. Relationships have been developed between the substrate physical characteristics, and both the pressure drop and total surface area of the substrate. The substrate pressure drop has also been related to power loss. What has been lacking is a means of quantitatively relating the substrate properties to the conversion efficiency. This paper proposes a simple relationship between the substrate total surface area and the emissions of the vehicle as measured on the FTP cycle.
Technical Paper

The Design of Automotive Catalyst Supports for Improved Pressure Drop and Conversion Efficiency

The current automotive catalytic converter is highly dependable and provides excellent emissions reduction while at the same time it offers little resistance to the flow of gasses through the exhaust system. As automobile performance requirements increase, and as the allowable tailpipe emissions are tightened, there is a need on the one hand to reduce the back pressure even further, and on the other, to increase the already excellent catalytic performance. This paper will analyze the substrate factors which influence the pressure drop and conversion efficiency of the catalyst system. The converter frontal area has the most significant influence on both pressure drop and conversion efficiency, followed in order by part length, cell density, and wall thickness.