Refine Your Search



Search Results

Journal Article

A Next Generation Cordierite Diesel Particle Filter with Significantly Reduced Pressure Drop

Diesel particle filters (DPF) have become a standard aftertreatment component for all current and future on-road diesel engines used in the US. In Europe the introduction of EUVI is expected to also result in the broad implementation of DPF's. The anticipated general trend in engine technology towards higher engine-out NOx/PM ratios results in a somewhat changing set of boundary conditions for the DPF predominantly enabling passive regeneration of the DPF. This enables the design of a novel filter concept optimized for low pressure drop, low thermal mass for optimized regeneration and fast heat-up of a downstream SCR system, therefore reducing CO₂ implications for the DPF operation. In this paper we will discuss results from a next-generation cordierite DPF designed to address these future needs.
Technical Paper

Advances of Durability of Ceramic Converter Systems

Governing bodies world-wide are setting increasingly tighter emission standards to help improve air quality. US and Californian LEV/ULEV standards are pace setting, European Stage II legislation has just become effective. In Brazil, the upcoming 1997 standards are also demanding for tighter emission control. The monolithic ceramic honeycomb catalytic converter -for more than the past 20 years- has been a reliable key element in the automotive emission control systems. In order to help meet tightened emission regulation as well to satisfy even more stringent durability requirement, an advanced thinwall ceramic Celcor XT has been developed for increased geometric surface area and reduced backpressure. The product properties as well as FTP and ECE emission and durability test results are being described in this paper. Converter system durability is also determined by robust canning and mounting systems. A durable mounting concept, especially for preconverters, is being described.
Technical Paper

Assessment of Lightweight Automotive Glass Solutions on Interior Noise Levels & Sound Quality

The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
Technical Paper

Design Considerations for a Ceramic Preconverter System

The preconverter is an essential element of exhaust gas treatment to help meet the tighter emission standards of TLEV and LEV levels. Its design must be chosen so as to meet the simultaneous requirements of compactness, faster light-off, low back pressure, high temperature durability and low cost. This paper presents design options for a ceramic substrate and durable package which lead to an optimum and cost-effective preconverter system. Preliminary data for high temperature physical durability of selected converter systems are presented. Performance parameters for light-off activity and back pressure are also computed and compared with those of standard substrates used in underbody application. Laboratory tests comprising of axial push-out test, high temperature vibration test, exhaust gas simulation test and the engine dynamometer test demonstrate the viability of ceramic preconverters for automotive application.
Technical Paper

Development of a Diesel Particulate Filter Composition and Its Effect on Thermal Durability and Filtration Performance

This paper details the development of the EX-80 composition, a new cordierite material for use as a diesel particulate filter (DPF), that was developed based on the following objectives; (1) improved thermal durability, (2) high filtration efficiency and (3) low pressure drop. The achievement of these goals was demonstrated through engine testing, stress modeling, and other evaluations. EX-80 has a low coefficient of thermal expansion (CTE) averaging less than 4x10-7°C-1 (25°C-800°C), the Modulus of Rupture (MOR) averages greater than 350 psi and the Modulus of Elasticity (MOE) averages less than 0.8 x 106 psi. The improvement of these three properties has resulted in improved thermal durability for EX-80 as compared to the current Corning DPF compositions (EX-47, EX-54 and EX-66). The new cordierite composition has been designed to achieve a low pressure drop as a function of soot loading (0.30 inHg/gm of soot collected), coupled with high efficiency, averaging greater than 90%.
Technical Paper

Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation

With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
Technical Paper

Diesel Emission Control - Last 12 Months in Review

The key diesel emission control papers of the last 12 months have been summarized. In addition, the emerging US and European light-duty and heavy-duty tailpipe regulations are compared. Results are reported on light-duty diesel filtration regeneration systems and experiences, including effects of ash build-up and some recent modeling work. On the heavy-duty side, optimization of SCR catalysts and systems are described, as well as experiences with the first integrated SCR/filter systems, which are already achieving “Euro V” 2008 standards. An update on NOx adsorbers is also provided. The results with new NOx formulations are described, as well as the system performance in a light-duty diesel application.
Technical Paper

Diesel Emission Control in Review

This paper gives a comprehensive overview of the current state-of-the-art in diesel emission control. The nature of diesel particulates is summarized. The variety of diesel particulate filter regeneration strategies that will become so important to filter application are reviewed. Filter retrofit and durability issues are addressed. DeNOx catalysts, SCR, NOx traps for diesel, and non-thermal plasma methods are summarized. Integrated NOx/PM systems are described. And reduction of exhaust toxics is discussed. The paper covers all major conferences in the year 2000 that occurred in the US and Europe. US and Europe.
Journal Article

Diesel Emissions in Review

This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for 70% tightening of fleet average light-duty (LD) criteria emissions likely to be proposed in California for ~2016-22. CO₂ regulations in both the heavy- and light-duty sectors will also tighten and impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Light-duty diesel engines are making incremental gains with combustion enhancements that allow downsizing for CO₂ savings. Heavy-duty (HD) engine show trade-offs between hardware recipes, exhaust deNOx control, and fuel consumption.
Technical Paper

Diesel Particulate Filter Regeneration: Thermal Management Through Filter Design

Honeycomb based diesel particulate filters have proven to be extremely effective in the removal of diesel soot. Under certain conditions, involving heavy soot loads and a shift of the engine into the idle mode during the early stages of the regeneration process, the current designs of cordierite filters have shown some tendency toward partial melting. A brief review of the SAE literature is presented, indicating that the temperatures reached during regeneration decrease substantially as the bulk heat capacity of the filter increases. Analysis of these literature data indicates that the top temperatures experienced during regeneration can be decreased by hundreds of degrees, by relatively modest increases in the bulk heat capacity of the bodies. New data are presented confirming how the top temperature varies with different filter designs in which the bulk heat capacity varies.

Diesel Particulate Filter Technology

Until recently, the complexity of the Diesel Particulate Filter (DPF) system has hindered its commercial success. Stringent regulations of diesel emissions has lead to advancements in this technology, therefore mainstreaming the use of DPFs in light- and heavy-duty diesel filtration applications. This book covers the latest and most important research in DPF systems, focusing mainly on the advancements of the years 2002-2006. Editor Timothy V. Johnson selected the top 29 SAE papers covering the most significant research in this technology.
Technical Paper

Durability of Extruded Electrically Heated Catalysts

Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Technical Paper

Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application

The motorcycle emissions regulations for both two-stroke and four-stroke engines, which are receiving worldwide attention, will go into effect in the very near future. To meet these regulations, the motorcycles will require a catalyst in conjunction with the muffler due to space limitations. The combination of high engine speeds, high vibrational acceleration, high HC and CO emissions, high oxidation exotherms, and stringent durability requirements, points to cordierite ceramic substrate as an ideal catalyst support. However, as an integral unit within the muffler, its packaging design must be capable of withstanding isothermal operating conditions which may exceed the upper intumescent temperature limit of the ceramic mat. This paper describes a durable packaging design for the ceramic catalyst which employs a hybrid ceramic mat, special end rings and gaskets, and high strength stainless steel can.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

Effect of Cell Geometry on Emissions Performance of Ceramic Catalytic Converters

More stringent emissions regulations, space limitations for catalytic converters in modern automotive applications, and new engine technologies constitute design challenges for today's engineers. In that context high cell density thinwall and ultrathinwall ceramic substrates have been designed into advanced catalytic converters. Whereas the majority of these substrates have a square cell geometry, a potential for further emissions improvement has been predicted for hexagonal cell structures. In order to verify these predictions, a ceramic substrate has been developed combining the features of high cell density, ultrathin cell walls, and hexagonal cell structure. Based on modeling data, the actual cell density and wall thickness of the hexagonal cell substrate will be defined. The performance of that substrate will be assessed by comparing experimental emissions results using two modern Volkswagen engines.
Technical Paper

Effect of Temperature on Biaxial Strength of Automotive Windshields

This paper focuses on the effect of temperature on biaxial strength of curved, symmetrically laminated, automotive windshields. In view of their aspheric curvature, the measurement of biaxial strength requires a special ring-on-ring test fixture with compliant loading and support rings. The key factors that affect strength are (i) fatigue behavior of surface flaws, (ii) expansion mismatch between glass and PVB interlayer, and (iii) interfacial bond integrity. These, in turn, depend on the operating temperature which for automotive windshields can range from −40°C in winter to +50°C in summer. The data show that the biaxial strength is 21% higher at −40°C and 28% lower at +50°C than that at room temperature. An assessment of fatigue and interfacial bond integrity shows that strength changes of these magnitudes are predominantly caused by residual stresses arising from expansion mismatch between glass and PVB interlayer.
Technical Paper

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

Multi-scale computational chemistry methods based on the ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) are applied to investigate electronic and atomistic roles of cordierite substrate in sintering of washcoated automotive catalysts. It is demonstrated that the UA-QCMD method is effective in performing quantum chemical molecular dynamics calculations of crystals of cordierite, Al₂O₃ and CeZrO₄ (hereafter denoted as CZ). It is around 10,000,000 times faster than a conventional first-principles molecular dynamics method based on density-functional theory (DFT). Also, the accuracy of the UA-QCMD method is demonstrated to be as high as that of DFT. On the basis of these confirmations and comparison, we performed extensive quantum chemical molecular dynamics calculations of surfaces of cordierite, Al₂O₃ and CZ, and interfaces of Al₂O₃ and CZ with cordierite at various temperatures.
Technical Paper

Evaluation of SoftMountSM Technology for Use in Packaging UltraThinwall Ceramic Substrates

Quantitative in-use pressure measurements were taken from packaging ceramic substrates with the SoftMountSM technology and two more traditional technologies, stuffing and tourniquet. Each technology was assessed using four separate mat materials. Mat selection enhanced the application of the SoftMountSM technology through the reduced pressures applied to the substrate during packaging. High temperature and low temperature thermal cycling studies were performed on the canned converters for the three packaging technologies so that an evaluation could be made of converter durability. The SoftMountSM packaging technology yielded the lowest pressures of all the processes studied, regardless of mat type. The laminar hybrid mat evaluated yielded the best combination of pressure and durability performance. Low temperature residual shear strengths following thermal cycling of the converters showed good correlation between the SoftMountSM technology and the stuffing method.
Technical Paper

Fatigue and Performance Data for Advanced Thin Wall Ceramic Catalysts

With stricter emissions standards, low back pressure requirements, and 100,000 mile durability specifications, ceramic catalysts have undergone significant developments over the past few years. The thrust in the ceramics area has centered on thin-wall structures to minimize back pressure and on high cell density for rapid light-off in close-coupled applications. The thin-wall structures are extruded from low expansion cordierite ceramic with adequate strength and thermal shock resistance equivalent to those of standard cordierite substrate. Examples of thin-wall substrate include 350XT which is extruded from a very low expansion dense cordierite ceramic, and 400/4 and 600/4 cell structures extruded from a low expansion modified cordierite ceramic. This paper will focus on the high fatigue resistance, excellent conversion efficiency, and low back pressure of 350 XT substrates with advanced washcoat system.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.