Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base

2007-10-29
2007-01-4000
In the early years of antifreeze/coolants (1920s & 30s) glycerin saw some usage, but because of higher cost and weaker freeze point depression, it was not competitive with ethylene glycol. Glycerin is a by-product of the manufacture of biodiesel (fatty acid methyl esters) made by reacting natural vegetable or animal fats with methanol. Biodiesel fuel is becoming increasingly important and is expected to gain a large market share in the next several years. Regular diesel fuels blended with 2%, 5%, and 20% biodiesel are now commercially available. The large amount of glycerin generated from high volume usage of biodiesel fuel has resulted in this chemical becoming cost competitive with the glycols currently used in engine coolants. For this reason, and lower toxicity comparable to that of propylene glycol, glycerin deserves to be reconsidered as a base for antifreeze/coolant.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Design and Validation of a New 13L Heavy-Duty Diesel Engine Using Analysis-Led Design

2008-10-07
2008-01-2673
The paper covers the design and development of a new 13L heavy-duty diesel engine. It describes in detail some of the design techniques that were used. To meet these exacting requirements, extensive use was made of Analysis-Led Design, which allows components, sub-systems and the entire engine, aftertreatment and vehicle system to be modeled before designs are taken to prototype hardware. This enables a level of system and sub-system optimization not previously available. The engine was designed primarily for on-highway use in China, and the paper describes the emissions strategy for China, and the physical design strategy for the new engine, and provides some engine performance robustness details. The engine architecture is discussed and the paper details the analysis of the major components - cylinder block, head, head seal, power cylinder, bearings and camshaft drive.
Technical Paper

Development of a Hybrid, Auto-Ignition/Flame-Propagation Model and Validation Against Engine Experiments and Flame Liftoff

2007-04-16
2007-01-0171
In previous publications, Singh et al. [1, 2] have shown that direct integration of CFD with a detailed chemistry auto-ignition model (KIVA-CHEMKIN) performs reasonably well for predicting combustion, emissions, and flame structure for stratified diesel engine operation. In this publication, it is shown that the same model fails to predict combustion for partially premixed dual-fuel engines. In general, models that account for chemistry alone, greatly under-predict cylinder pressure. This is shown to be due to the inability of such models to simulate a propagating flame, which is the major source of heat release in partially premixed dual-fuel engines, under certain operating conditions. To extend the range of the existing model, a level-set-based, hybrid, auto-ignition/flame-propagation (KIVA-CHEMKIN-G) model is proposed, validated and applied for both stratified diesel engine and partially premixed dual-fuel engine operation.
Technical Paper

Development of a New 13L Heavy-Duty Diesel Engine Using Analysis-Led Design

2008-06-23
2008-01-1515
The paper covers the design and development of a new 13L heavy-duty diesel engine intended primarily for heavy truck applications in China. It provides information on the specific characteristics of the engine that make it particularly suitable for operation in China, and describes in detail some of the design techniques that were used. To meet these exacting requirements, extensive use was made of Analysis-Led Design, which allows components, sub-systems and the entire engine, aftertreatment and vehicle system to be modeled before designs are taken to prototype hardware. This enables a level of system and sub-system optimization not previously available. The paper describes the emissions strategy for China, and the physical design strategy for the new engine, and provides some engine performance robustness details. The engine architecture is discussed and the paper details the analysis of the major components - cylinder block, head, head seal, power cylinder and bearings.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Interaction Between Fuel Additive and Oil Contaminant: (II) Its Impact on Fuel Stability and Filter Plugging Mechanism

2003-10-27
2003-01-3140
Sulfur containing species as well as other polar molecules provide lubricity and thermal stability to diesel fuels. During the refining process to produce low and ultra-low sulfur diesel fuels, these components are removed. As a result, fuel additives such as lubricity agents and antioxidant may be added to protect fuel stability and prevent fuel pump wear. Some lubricity additives, such as dimer acids, resulted in fuel filter plugging. The plugging mechanism was related to the capability of aliphatic acids to form agglomeration by interactions with the overbased detergents, delivered into the fuel as oil contaminants. Other sources of acids, derived from thermal degradation, can lead to the same problem. In this study, individual lubricant additives were mixed in the fuel to form single- and dual-component systems. Levels of compatibility and amounts of interaction products were evaluated for individual solutions.
Journal Article

Piston Cooling Nozzle Oil Jet Evaluation Using CFD and a High Speed Camera

2016-09-27
2016-01-8100
Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
Journal Article

Piston Friction Reduction by Reducting Piston Compression Height for Large Bore Engine Applications

2017-03-28
2017-01-1044
Improving engine efficiency and reducing the total cost of ownership demands engine friction loss reduction through optimal design, especially for large bore application considering the amount of fuel the engine consumes during its service life. Power cylinder is a big source for engine friction and piston accounts for about 25% to 47% of the power cylinder friction [1]. Thus the piston design needs to be optimized to minimize friction; and at the same time, not sacrificing the durability. This work focuses on piston friction reduction by utilizing shorter compression height piston for large bore engine application through analytical simulation study. From the simulation study, 12.5% friction reduction has been achieved in the piston skirt to liner interface for the shorter piston with longer connecting-rod compared to the baseline design.
Technical Paper

Quantification of Biodiesel Content in Fuels and Lubricants by FTIR and NMR Spectroscopy

2006-10-16
2006-01-3301
The use of biodiesel requires the development of proper quantification procedures for biodiesel content in blends and in lubricants (fuel dilution in oil). Although the ester carbonyl stretch at 1746 wavenumbers (cm-1) is the most prominent band in the IR spectrum of biodiesel, it is difficult to use for quantification purposes due to a severe fluctuation of absorption strength from sample to sample, even at the same biodiesel content. We have demonstrated that the ester carbonyl fluctuation is not caused by variation in the ester alkyl chain length; but is most likely caused by the degree of hydrogen bonding of the ester functional group with water in the sample. Water molecules can form complexes with the ester compound affecting the strength of the ester carbonyl band. The impact of water on quantification of the biodiesel content of blends was significant, even for B100 samples that met the proposed ASTM D6751 water limit of 500 ppm by D6304 (Karl Fischer Methdod).
Technical Paper

Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks

2006-10-16
2006-01-3257
In April 2003, a small field study was initiated to evaluate the effect of lube oil formulations on ash accumulation in heavy-duty diesel DPFs. Nine (9) Fuel Delivery Trucks were retrofitted with passive diesel particulate filters and fueled with ultra low sulfur diesel which contains less than 15 ppm sulfur. Each vehicle operated in the field for 18 months or approximately 160,000 miles (241,401 km) using one of three lube oil formulations. Ash accumulation was determined for each vehicle and compared between the three differing lube oil formulations. Ash analyses, used lube oil analysis and filter substrate evaluations were performed to provide a complete picture of DPF operations. The evaluation also examined some of the key parameters that allows for the successful implementation of the passive DPF in this heavy-duty application.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System

2019-04-02
2019-01-0247
Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point.
X