Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Application of Nylon Composite Recycle Technology to Automotive Parts

2003-03-03
2003-01-0794
Recently there has been a market trend requiring End of Life Vehicles to be recycled to satisfy current legislation; therefore, we are approaching the recyclability of automotive parts based upon these environmental requirements. At this time, we have demonstrated a new recycle technology for polyamide using one of the largest automotive applications, the radiator end tank which has been previously viewed as degraded material due to hydrolysis and deemed as shredder residue. This technology [1] allows for the recovery of the base resin that is then recycled into a radiator end tank with performance equivalent to one made of virgin resin. The process for this technology includes collection of post consumer radiator end tanks that are then reground, dissolved, filtered for glass fiber removal, precipitated, recovered, and compounded into a usable resin. This technology is referred to as “Nylon Composite Recycle”.
Technical Paper

Automotive High Pressure Sensor

1998-02-23
980271
There has recently been an increasing need in various automotive monitoring and control systems for a simply structured and highly reliable high-pressure sensor to detect the higher pressures of oils, hydraulic fluids, air and air conditioning refrigerants. A simple, newly devised approach to sealing oil filled high-pressure sensors is introduced in this paper. The new structure utilizes a resin instead of the metal and glass conventionally used for hermetic sealing oil filled high-pressure sensors. This is made possible by the combined use of oils with large effective molecular diameters and carefully optimized design of shape and size of the sealing faces between sensor parts. The use of a sealed metal diaphragm allows for extensive use of the sensor with many different kinds of pressure media and in various applications.
Technical Paper

Concept of Vehicle Electric Power Flow Management System (VEF)

2004-03-08
2004-01-0361
Increasing electric loads in a vehicle causes over-discharge of a battery and drag torque due to an alternator. This paper gives a system concept of vehicle electric power flow management to solve these issues. Its primary function includes preserving electricity in a battery, stabilizing electric bus voltage, interfacing with vehicle torque control system, and improving fuel economy. The key point to realize such a system is a unified structure. It offers ‘Plug and Play’ function for electric power management components. Newly developed Vehicle Electric Power Flow Management System (VEF ) totally controls electric power flow in a vehicle. VEF contains an Electric Power Manager and its functional sub-systems, and controls them with the key parameter ‘electric power’. The sub-system includes Generation, Storage, Conversion, and Distribution to the loads.
Technical Paper

Development of Quad-layer Clad Brazing Sheet for Drawn Cup Type Evaporators: Part 1

2001-03-05
2001-01-1253
Having a light weight, a good heat conductivity and a good brazability, aluminum alloy is widely used for automotive heat exchanger systems. The major problem with Aluminum is perforation of the tube by pitting corrosion and corrosion protection is necessary in the field. In radiator and condenser systems using the the Nocolok brazing process given good corrosion resistance using cathodic protection with sacrificial anode made of Zn-sprayed onto tube or low corrosion potential fins etc. On the other hand, in drawn-cup type evaporators, that are fabricated from brazing sheet tubes in vacuum brazing method and then covered low electro-conductive drain water film in operation, the effect of cathodic protection by the anode fin is limited to a very small area. Therefore, this has been studied to improve self-corrosion resistance of the core in the brazing sheet tube.
Technical Paper

Development of a Cooling Module Containing a Radiator and a Condenser - Part 2: Alloy Development

2001-03-05
2001-01-1019
In conventional automobile designs, a radiator and a condenser are typically configured and mounted independently of each other. We have developed a smaller and more powerful cooling module by integrating these two products into one piece. The new cooling module has been designed to share the fin material and to have an insulating slit and other means for effective prevention of heat loss that occurs due to thermal conduction between the radiator and the condenser1). In addition, as one of the key techniques for integrating fins, we studied thermal spraying of brazing filler to the tube material and were able to achieve a practical-level cooling module through use of high-performance fins, contributing largely to the efforts to create a more compact, higher performance cooling module.
Technical Paper

Development of a Cooling Module Containing a Radiator and a Condenser Part 1: Product Design

2001-03-05
2001-01-1018
In conventional automobile designs, a radiator for cooling the engine and a condenser for condensing the air-conditioner refrigerant are typically configured independently of each other; they are usually mounted in series in the front of the engine compartment so that they will receive sufficient air flow while the vehicle is running. We have developed a smaller and higher performance cooling module by integrating these two heat exchangers into one unit. (Fig 1) For the heat dissipation fin, we have employed an integral fin construction equipped with an insulating slit, resulting in effective prevention of thermal conduction from the higher temperature radiator side, to the condenser side. We also succeeded in improving heat dissipation performance by making effective use of the connection part of the integral fin.
Technical Paper

Optimal Control of Plural Power Supply Systems with Vehicle Electric Power Flow Management System (VEF)

2006-04-03
2006-01-1223
A lot of electric components have been installed in a vehicle today for comfort, safety and environment. This tendency is said to be continued in the future. Therefore, additional power supplies such as exhaust gas electricity generation system and thermal electricity generation system have been developed in the world to supply additional electricity as well as an enlargement of an alternator. However, if these new electricity supply systems are installed in a present electric power system that is controlled based on a voltage feedback, each supply system cannot be controlled effectively, because it is difficult to control output power of each system independently. An electric power based control system, Vehicle Electric power Flow management system (VEF), has been developed to avoid this problem. Sum of required electric power is calculated based on electric loads power and battery charging power. This required power is allocated to each power supply system.
Technical Paper

Sensorless Control of a Brushless Motor for the ESC Unit

2023-04-11
2023-01-0452
In general, automatic braking uses an electric stability control (ESC) hydraulic unit that can automatically increase the hydraulic pressure in the wheel cylinder (hereinafter called wheel pressure), independent of the driver’s braking operation. The hydraulic unit should have sufficient pressure response to apply autonomous emergency braking (AEB). It was necessary for the hydraulic unit to have a high flow rate for the pressure response. To satisfy the performance requirements of the AEB, a brushless motor, which has a high maximum rotational speed and good response, is adopted for the hydraulic unit. Furthermore, sensorless control, which does not require a rotation angle sensor, has been developed so that the motor size can be small and common to conventional units. The developed sensorless control can switch the driving methods in three states: pre-rotation, low speed, and high speed.
X