Refine Your Search

Topic

Author

Search Results

Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Technical Paper

Ash Transport in Diesel Particle Filters

2012-09-10
2012-01-1732
Lubricant oil derived ash deposits still represent a major issue in diesel particulate filter operation in vehicles. In literature various ash deposition patterns are described. The two boundary deposition patterns are (a) wall layer and (b) filling at the back end of the inlet channels. The patterns are often associated with different regeneration methods. Continuous regeneration is supposed to result in a homogeneous ash layer, whereas periodic (active) regeneration is reported to result in back end filling. The current contribution describes the basic mechanisms associated with ash transport phenomena in particle filters. On the basis of (a) frequency of ash exposure to flow (b) ash particle structure re-entrainment and finally (c) axial ash transport the different deposition pattern can be explained. Exposure to flow accomplished by periodical soot removal, either by passive or active regeneration is the first step.
Technical Paper

BLUETEC Diesel Technology - Clean, Efficient and Powerful

2008-04-14
2008-01-1182
Diesel engines have a strong contribution to the CO2 reduction in Europe in the past years. To enable these C02 reduction potential to the US market Mercedes Benz developed the BLUETEC technology for light duty diesel engines. The BLUETEC technology contains an optimized diesel engine and combustion system, an aftertreatment system with DOC, DPF and an active SCR catalyst with AdBlue Dosing System and an enhanced ECU functionality and calibration. For fulfilling the world strongest emission limits of the US legislation there have to be solutions developed for the handling of AdBlue under cold climate below -11°C, managing the refilling event, and the onboard diagnostic. To ensure the emission stability over full useful life on high NOx conversions level, intensive testing of the catalyst technology had to be done. In addition there are self learning functionalities for adapting the dosing strategy to ensure the maximum NOx performance.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

Challenges for the Next Generation of BlueTEC Emission Technology

2011-04-12
2011-01-0294
Mercedes-Benz BlueTEC passenger cars have been on the cutting edge of clean diesel technology since 2006. These BlueTEC vehicles furthermore passed millions of kilometers in the hands of customers. SCR-equipped passenger cars already meet the most stringent exhaust emissions standards in international markets such as the USA, Europe and Japan. Diesel engines with BlueTEC technology also reduce CO₂ emissions and provide the high torque and performance associated with the diesel engine in addition to keeping exhaust emissions at the lowest possible level. Nowadays the requirements for SCR emission concepts are increasing continuously. In fact the emission legislation is getting stricter with the LEVIII emission standards in 2015. Additionally the requirements and effort for on-board diagnosis are increasing year after year. In combination with ambitious CO₂ targets all these issues constitute the further challenges of BlueTEC SCR emission concepts for worldwide markets.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
Technical Paper

Investigations of Spray-Induced Vortex Structures during Multiple Injections of a DISI Engine in Stratified Operation Using High-Speed-PIV

2013-04-08
2013-01-0563
Modern gasoline direct injection engines with spray-guided combustion processes require a stable and reliable fuel mixture formation as well as an optimal stratification at time of ignition. Due to the limited time for this process the temporal and spatial analysis of the in-cylinder flow field and its influence is of significant interest. The application of a piezo injector with outward opening nozzle and its capability to realize multiple injections within the compression stroke provides additional degrees of freedom for the stratified engine operation. To improve the performance of this combination a detailed knowledge of the in-cylinder flow field and its interaction with the spray propagation during and after multiple injections is essential. The flow field measurements were applied in an optical borescope single-cylinder research engine using a high-speed particle image velocimetry (HSPIV) setup.
Technical Paper

Investigations on Chemical Ageing of Diesel Oxidation Catalysts and Coated Diesel Particulate Filters

2010-04-12
2010-01-1212
For medium- and heavy-duty diesel engines, the development of new catalyst technologies and particulate filters is necessary to fulfill increasingly stringent emission regulations. An important aspect is the durability of the after-treatment system and therefore its efficiency over lifetime. Lubrication oil additives contain components such as phosphorous or zinc to ensure engine durability. Diesel oxidation catalyst (DOC) and coated diesel particulate filter (cDPF) catalytic coatings are negatively influenced by contamination on the surface with these components (chemical ageing). The components have a negative impact on the exhaust after-treatment systems performance. Additionally the cDPF is filled with oil ash. Engine tests are conducted to analyze the effect of lubrication oil additives on after-treatment system performance. In one study, lubrication oil with increased sulfur ash content is used.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Journal Article

Modeling and Numerical Calculation of Snow Particles Entering the Air Intake of an Automobile

2015-04-14
2015-01-1342
A physically based model to predict the amount of snow which is entering the air intake of an automobile is extremely important for the automotive industry. It allows to improve the air intake system in the development state so that new vehicles can be developed in a shorter time. Using an Eulerian/Lagrangian approach within a commercial CFD-software we set up a model and calculated the snow ingress into an air intake of an automobile. In our numerical investigations we considered different particle shapes when calculating the drag coefficient, different coefficients of restitution and different particle sizes. Furthermore two-way coupling was considered. To obtain key parameters for the simulation, we measured the size of snow particles in the Daimler climatic wind tunnel in Sindelfingen by using a microscope and a measuring device from Malvern. Besides we used mechanical snow traps to determine the snow mass flux in the climatic wind tunnel and on a test area in Sweden.
Technical Paper

Modeling of Injected Diesel Fuel Conversion and Heat Release in Oxidation Catalyst: 3D-CFD & 1D Channels Approach

2012-04-16
2012-01-1293
A system for controlled heat generation in exhaust pipeline is studied, consisting of fuel injector and oxidation catalyst (plus connecting pipes). A 3D-CFD software (StarCD) coupled with a tailored 1D model of catalytic monolith channel (XMR) are employed for simulations of realistic, fully 3D system geometry. Exhaust gas flow, fuel injection, and distribution at the catalyst inlet is solved by 3D-CFD, while the processes inside individual representative channels are simulated by the effective 1D model. The 3D-CFD software calls iteratively the 1D channel model with proper boundary conditions and solves 3D temperature profile over the monolith, utilizing local enthalpy fluxes (including gas-solid heat transfer and reaction enthalpy) calculated by the 1D channel model. Seven representative hydrocarbons are used for characterisation of Diesel fuel composition with respect to catalytic oxidation kinetics.
Journal Article

Modelling of NOx Storage + SCR Exhaust Gas Aftertreatment System with Internal Generation of Ammonia

2010-04-12
2010-01-0887
Combination of an NOx storage and reduction catalyst (NSRC, called also lean NOx trap, LNT) and a catalyst for the selective catalytic reduction of NOx by NH₃ (NH₃-SCR) offers a potential to significantly increase the efficiency of NSRC-based exhaust gas aftertreatment systems. Under most situations the SCR catalyst is able to adsorb the NH₃ peaks generated in the NSRC during the regeneration and utilize it for additional NOx reduction in the course of the consequent lean phase. This synergy becomes more important with the aged NSRC, where generally lower NOx conversions and higher NH₃ yields in wider range of operating temperatures are observed (in comparison with the fresh or de-greened NSRC). In this paper we present global kinetic models for the NSRC (Pt/Ba/Ce/gγ-Al₂O₃ catalyst type) and NH₃-SCR (Fe-ZSM5 catalyst type).
Technical Paper

New V6-Diesel-Engine for the Daimler Van “Sprinter” Certified to Emission-Regulation NAFTA2007

2008-04-14
2008-01-1194
The new Sprinter targets the USA and Canada markets nationwide to reconfirm Daimlers statement for Diesel engine in vans. Consequentially, the MY2007 Sprinter follows his successful predecessor as again the first - and up to now the only - Diesel vehicle in its class now meeting even the strict EPA07 requirement in California. For the growing market in North America an unique development for the successor for the previous 5-cylinder Diesel Sprinter had been made. The new 3 liter V6 Diesel engine is based on numerous corporate wide versions from Mercedes and Chrysler Passenger cars and SUVs and has its roots also in smaller and larger Mercedes vans. Effective January 2007 the NAFTA04 requirements have been replaced by the NAFTA07 values. Meeting those led to significant changes of the latest Sprinter in European EURO4 version. Both, engine and exhaust hardware as well as the ECU-data had been modified consequentially.
Journal Article

Numerical Simulation of DOC+DPF+SCR systems:DOC Influence on SCR Performance

2008-04-14
2008-01-0867
A numerical model for a diesel oxidation catalyst (DOC) is presented. It is based on a spatially 1D, physical and chemically based modeling of the relevant processes within the catalytic monolith. A global reaction kinetic approach has been chosen to describe the chemical reactions. Water condensation and evaporation was also considered, in order to predict the cold start behavior. Reaction kinetic parameters have been evaluated from a series of laboratory experiments. A correlation between the kinetic parameters and the noble metal loading was developed. The model was used in combination with a SCR-Model to study the influence of changes of noble metal loading and DOC volume on the overall transient NOx performance of a DOC+DPF+SCR system.
Journal Article

On Road Durability and Performance Test of Diesel Particulate Filter with BS III and BS IV Fuel for Indian Market

2016-04-05
2016-01-0959
The future emission regulation (BS V) in India is expected to create new challenges to meet the particulate matter (PM) limit for diesel cars. The upcoming emission norms will bring down the limit of PM by 80 % when compared to BS IV emission norms. The diesel particulate filter (DPF) is one of the promising technologies to achieve this emission target. The implementation of DPF system into Indian market poses challenges against fuel quality, driving cycles and warranty. Hence, it is necessary to do a detailed on-road evaluation of the DPF system with commercially available fuel under country specific drive cycles. Therefore, we conducted full vehicle durability testing with DPF system which is available in the European market to evaluate its robustness and reliability with BS III fuel (≤350ppm sulfur) & BS IV (≤50ppm sulfur) fuel under real Indian driving conditions.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro VI Heavy-Duty Diesel Engine with High EGR-Rates, an In-Cylinder Peak Pressure of 250 Bar and an Injection Pressure up to 2500 Bar

2019-09-09
2019-24-0171
A raise of efficiency is the strongest selling point concerning the total cost of ownership (TCO), especially for commercial vehicles (CV). Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. Wall heat transfer (WHT) losses are awarded with the highest optimization potential. Critical for the occurrence of these losses is the WHT, which can be described by representing coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is necessary to determine the WHT relations of the combustion chamber in an engine. As this has not been done for a Heavy-Duty (HD) engine, with peak pressures up to 250 bar, an increased in-cylinder turbulence and high exhaust gas recirculation (EGR)-rates before, it is presented in the following.
Technical Paper

Quality Assurance and Robustness for Predictive Cruise Control Using Digital Map Data

2010-04-12
2010-01-0467
The economic challenges and environmental imperatives facing the trucking and automobile industries today all point to a pressing need to improve fuel efficiency. Due to increasing volatility of fuel supplies, prices and a growing interest in reducing greenhouse gas emissions, fuel efficiency has taken on new urgency. In the long-haul trucking industry this is especially important given the fact that fuel accounts for a significant share of fleet operating costs. To this end Daimler and NAVTEQ have developed a system to improve fuel economy and reduce CO₂ emissions through the integration of digital map data into Advanced Driver Assistance Systems or ADAS. Digital road map attributes, especially road slope have been demonstrated to enable powertrain controls to anticipate road inclination changes and use this information to predictively enhance load management optimization versus the reactive approach afforded by current technology.
Technical Paper

Sensor for Directly Determining the State of a NOx Storage Catalyst

2008-04-14
2008-01-0447
In order to control NOx reduction with NOx storing lean NOx traps (LNT), a gas sensor downstream of the LNT is presently preferred. It is a disadvantage that no means are available to gauge directly the LNT NOx loading level and the catalyst quality. The presented novel sensor consists of interdigital electrodes that are deposited on a planar substrate. On its reverse side, a temperature sensor is applied. Both sides are covered with the original catalyst coating, allowing detecting directly electrical impedance and temperature of the coating. Such sensors were integrated in different positions of an LNT. It is shown in synthetic exhausts as well as in engine tests that in-situ measurements of the electrical impedance of the LNT coating are appropriate to determine directly the catalyst status. Hence, the local degree of NOx loading as well as the local regeneration status can be measured. Furthermore, sulfur poisoning, desulfurization, and thermal ageing can be directly seen.
X