Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Conversion Efficiency and Flow Restriction Performance of Ceramic and Metallic Catalyst Substrates

2001-03-05
2001-01-0926
Catalyst systems utilizing ceramic and metallic substrates were compared to assess the influence of various substrate parameters on the exhaust gas conversion efficiency and flow restriction. In particular, the substrate surface area, substrate specific heat capacity, and substrate volume were all evaluated for their importance in estimating the conversion efficiency of the catalyst system. Additionally, substrate open frontal area and cell hydraulic diameter were compared against exhaust restriction performance.
Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Crank-Angle Resolved Temperature in SI Engines Measured by Emission-Absorption Spectroscopy

1999-10-25
1999-01-3542
Crank-angle resolved, gas temperatures are determined in the combustion chamber of a Volkswagen (VW) standard-production, port-injected SI engine. During idle, two different methods are applied: (1) a direct spectroscopic emission-absorption technique at a resonance line of potassium, seeded to the air stream to generate sufficient spectral absorptance (‘colouring’ technique), and (2) a more standard, indirect method in which temperatures are derived from pressure recordings using a two-zone thermodynamic model. Combustion temperatures obtained during idle with both the spectroscopic (1) and ‘two-zone’ (2) methods are in good agreement. In addition, the spectroscopic technique is extended to transient operating conditions where the ‘two-zone’ method is not applicable. Combustion temperatures measured during cold-start and abrupt load alteration are in good agreement with former investigations.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Effects of Substrate Diameter and Cell Density FTP Performance

2007-04-16
2007-01-1265
An experiment was performed with a 1.3L catalytic converter design containing a front and rear catalyst each having a volume of 0.65 liters. This investigation varied the front catalyst parameters to study the effects of 1) substrate diameter, 2) substrate cell density, 3) Pd loading and 4) Rh loading on the FTP emissions on three different vehicles. Engine displacement varied from 2.4L to 4.7L. Eight different converters were built defined by a Taguchi L-8 array. Cold flow converter restriction results show the tradeoff in converter restriction between substrate cell density and substrate diameter. Vehicle FTP emissions show how the three vehicles are sensitive to the four parameters investigated. Platinum Group Metals (PGM) prices and Federal Test Procedure (FTP) emissions were used to define the emission value between the substrate properties of diameter and cell density to palladium (Pd) and rhodium (Rh) concentrations.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

FlexMetal Catalyst Technologies

2005-04-11
2005-01-1111
A new family of automotive three-way conversion (TWC) catalyst technologies has been developed using a Precision Metal Addition (PMA) process. Precious metal (PGM) fixation onto the support occurs during the PMA step when the PGM is added to the slurry immediately prior to application to the monolith substrate. PMA slurries can be prepared with high precision and the slurry manufacturing process is greatly simplified. Further, it has been found that with the use of new generation washcoat (WC) materials, the same WC composition can be used for all three PGMs - Pt, Pd & Rh. Negative interactions between Pd and Rh in the same WC layer do not occur, providing advantages over older technologies. Thus, new WC compositions coupled with the PMA process offers precious metal flexibility. This FlexMetal family of catalyst technologies includes single layer Pd-only, Pd/Rh and Pt/Rh and dual layer bi-metal Pd/Rh and Pt/Rh and tri-metal Pt/Pd/Rh.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

In-Cylinder Measurements and Analysis on Fundamental Cold Start and Warm-up Phenomena of SI Engines

1995-10-01
952394
A recently developed Laser Raman Scattering system was applied to measure the in-cylinder air-fuel ratio and the residual gas content (via the water content) of the charge simultaneously in a firing spark-ignition engine during cold start and warm-up. It is the main objective of this work to elucidate the origin of misfires and the necessity to over-fuel at cool ambient temperatures. It turns out that the overall air-fuel ratio and residual gas content (in particular the residual water content) of the charge appear to be the most important parameters for the occurrence of misfires (without appropriate fuel enrichment), i.e., the engine behaviour from cycle to cycle becomes rather predictable on the basis of these data. An alternative explanation for the necessity to over-fuel is given.
Technical Paper

In-Cylinder Mixture Formation Analysis with Spontaneous Raman Scattering Applied to a Mass-Production SI Engine

1997-02-24
970827
Mixture formation analysis in the combustion chamber of a slightly modified mass-production SI engine with port-fuel injection using nonintrusive laser measurement techniques is presented. Laser Raman scattering and planar laser-induced tracer fluorescence are employed to measure air-fuel ratio and residual gas content of the charge with and without spatial resolution. Single-cycle measurements as well as cycle-averaged measurements are performed. Engine operation parameters like load, speed, injection timing, spark timing, coolant temperature, and mean air-fuel ratio are changed to study whether the effects on mixture formation and engine performance can be resolved by the applied laser spectroscopic techniques. Mixture formation is also analyzed by measurement of the charge composition as a function of crank angle. Clear correlations of the charge composition data and engine operating conditions are seen.
X