Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A New Calibration System for the Daimler Chrysler Medium and Heavy Duty Diesel Engines - An Exercise in Methods & Tools

2001-03-05
2001-01-1222
High demands in fuel consumption, efficiency, and low emissions lead to complex control functions for current and future diesel engine management systems. Great effort is necessary for their optimal calibration. At the same time, and particularly for cost reasons, many variants exist on one individual type of diesel engine management system. Not only is it used for several base engines, but these engines are also used in different environments and for different tasks. For optimal deployment, their calibration status must also be optimized individually. Furthermore, the demand for shorter development cycles and enhanced quality lead to a catalogue of new requirements for the calibration process and the affiliated tool. A new calibration system was developed, which optimally reflects the new demands.
Technical Paper

Collaborative Product Creation Driving the MOST Cooperation

2002-10-21
2002-21-0003
The following document offers insight into the work of the MOST Cooperation. Now that MOST is on the road, a short overview of five years of successful collaborative work of the partners involved and the results achieved will be given. Emphasis is put on the importance of a shared vision in combination with shared values as a prerequisite for targeted collaborative work. It is also about additional key success factors that led to the success of the MOST Cooperation. Your attention will be directed to the way the MOST Cooperation sets and achieves its goals. And you will learn about how the organization was set-up to support a fast progression towards the common goal. The document concludes with examples of recent work as well as an outlook on future work.
Technical Paper

Evaluation on Analytical Tire Models for Vehicle Vertical Vibration Simulation Using Virtual Tire Testing Method

1999-03-01
1999-01-0786
This paper evaluates several durability tire models using Virtual Tire Testing (VTT) strategy. VTT conducts tire testing (simulation) using LS–DYNA based on a Virtual Tire which is built by 3–D finite element mesh. VTT is repeatable and could do special tire tests which can't be done using normal tire testing bench. A brief review is given on durability tire models and several typical tire models are selected for this study. All the necessary parameters for establishing the analytical tire models are extracted from the Virtual Tire. Quarter vehicle model is used to simulate the vehicle vertical vibration. The comments of those analytical tire models are given based on their performance vs. VTT.
Technical Paper

Functional Integration of E/E Systems

2000-11-01
2000-01-C052
The complexity of electrical/electronic vehicle systems mandates a systematic approach to the development of vehicle control, infotainment or comfort functions as well as the integration of these functions in an in-vehicle network consisting of several dedicated bus systems and according gateways. Due to reduced time-to-market, the integration has to be performed in a virtual environment. The classical Digital Mockup (DMU) addresses the physical integration of EE systems as mechanical components. However, functional aspects play a dominant role in EE vehicle systems. For this reason, functional integration defines a multi-view, mixed-level approach to the description, transformation, verification and integration of vehicle functions under consideration of the physical vehicle integration.
Technical Paper

Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters:Model Development and Applications

2006-04-03
2006-01-0468
A 1D+1D numerical model describing the ammonia based SCR process of NO and NO2 on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. Basing on a fundamental investigation of the catalytic processes a reaction mechanism for the NO/NO2 - NH3 reacting system is proposed and modeled. After the parameterization of the reaction mechanism the reaction kinetics have been coupled with models for heat and mass transport. Model validation has been performed with engine test bench experiments. Finally the model has been applied to study the influence of NO2 on SCR efficiency within ETC and ESC testcycles, Additional simulations have been conducted to identify the potential for catalyst volume reduction if NO2 is present in the inlet feed.
Technical Paper

Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters

2007-04-16
2007-01-1136
A numerical model describing the ammonia based SCR process of NOX on zeolite catalysts is presented. The model is able to simulate coated and extruded monoliths. The development of the reaction kinetics is based on a study which compares the activity of zeolite and vanadium based catalysts. This study was conducted in a microreactor loaded with washcoat powder and with crushed coated monoliths. A model for the SCR reaction kinetics on zeolite catalysts is presented. After the parameterization of the reaction mechanism the reaction kinetics were coupled with models for heat and mass transport. The model is validated with laboratory data and engine test bench measurement data over washcoated monolith catalysts. A numerical simulation study is presented, aiming to reveal the differences between zeolite and vanadium based SCR catalysts.
Technical Paper

The Vision of a Comprehensive Safety Concept

2001-06-04
2001-06-0252
A look at the various past achievements in the field of passenger car safety raises the question whether any dramatic steps towards its improvement can still be expected. Will progress be confined to the optimization of existing systems or does the future hold new substantial safety steps? This paper elaborates on the issue that the time available before a potential accident occurs can be used to improve the safety of occupants and other involved road users. Accident analysis confirms that this is feasible for about two-thirds of all accidents. The recognition of an imminent collision bears a noteworthy potential for accident prevention, reduction of accident severity and injury severity. The former boundary between active and passive safety thus fades continually. Based upon this it is possible to describe vehicle safety by a comprehensive approach encompassing seven escalation levels.
Technical Paper

Using Model and Code Reviews in Model-based Development of ECU Software

2006-04-03
2006-01-1240
In the automotive industry, the model-based approach is increasingly establishing itself as a standard paradigm for developing control unit software. Just as code reviews are widespread in classical software development as a quality assurance measure, models also have to undergo a stringent review procedure – particularly if they serve as a starting point for automatic implementation by code generators. In addition to these model reviews, the generated production code is reviewed later in the development process by performing auto code reviews. This article will present procedures for and give an account of experiences with model and code reviews which have been adapted to the model-based development process.
X