Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Estimation Of Damping Loss Factors By Using The Hilbert Transform And Exponential Average Method

2001-04-30
2001-01-1408
The damping loss factor of a structural panel plays a significant role in its vibro-acoustic performance. The objective of this paper is to present a new procedure for evaluating the damping loss factors of these panels. Traditionally, the damping loss factors are determined by using the decay rate of the decay curves which are experimentally obtained from the structure. However, this is time consuming and the accuracy is limited by fluctuations in the decay curve. In this paper, the envelope signal of each decay curve is determined through its Hilbert transform, and the remaining small fluctuations in the envelope signal are further smoothed out by the exponential average method. Finally, the damping loss factor is estimated based on the smoothed envelope signal of each decay curve. A computer program has been developed to implement this procedure. It is shown that this procedure improves both accuracy and efficiency of the decay rate method for estimating damping loss factor.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Measurement of Transfer Case Imbalance

2005-05-16
2005-01-2297
Different methodologies to test transfer case imbalance were investigated in this study. One method utilized traditional standard single plane and two plane methods to measure the imbalance of the transfer case when running it on a dynamic balance machine at steady RPM, while a second method utilized accelerometers and a laser vibrometer to measure vertical vibration on the transfer case when running it on a dynamic balance machine in 4 Hi open mode during a run up from 1000 to 4000 RPM with a 40 RPM difference between the input and output shaft speeds. A comparison of all of the measurements for repeatability and accuracy was done with the goal of determining an appropriate and efficient method that generates the most consistent results. By using the traditional method, the test results were not repeatable. This may be due to the internal complexity of transfer cases. With the second method, good correlation between the measurements was obtained.
X